
Project 11: Buffer Overflow Exploit in DVL
15 Points

What You Need for This Project
· A Damn Vulnerable Linux 1.0 or 1.1 ISO file (It's in the MoreVMs:\Install folder in S214, also available on my Web page on the CNIT 124 page near this Project) . You cannot use the latest version, DVL 1.4.
· Any virtual machine, preferably running on a desktop computer without a USB mouse or keyboard (some laptops and computers with USB devices can't boot DVL 1.0 correctly)
Booting a Virtual Machine from the DVL ISO
1. Click Start, "All Programs", VMmanager, VMmanager.

2. In the VMmanager window, click the Modify button.

3. Navigate to any of your virtual machines, such as the Hacme one.

4. In the VMmanager window, click the Drives tab. In the CD-ROM section, select "use ISO image". In the Open box, navigate to the MoreVMs drive. Double-click the Install folder. Double-click the damnvulnerablelinux_1.0.isofile.

5. In the VMmanager window, click the Finish tab. Click OK. In the VM Manager box, click OK.
6. Launch VMware Player and start your virtual machine. If necessary, press F2 during bootup and set the BIOS to boot from the CD-ROM.
7. At the boot: prompt, press the Enter key. Several pages of text scroll by as Linux boots.

Testing the exploitme001 Application

8. On the desktop, click the ATerminal button. In the Bash window, type this command, and then press the Enter key (note that dvl ends in a lowercase L, not the numeral 1):
cd /opt/wwwroot/htdocs/exploitmes
This command changes the working directory to the one we need. There are a lot of lessons in DVL, but we are only doing one of them.
9. In the Bash window, type this command, and then press the Enter key:

ls
The files in the directory are listed, including the one we will use, 01_exploitme01, as shown below on this page.
[image: image1.png]

10. [image: image2.jpg]ds18box:"$ cd /opt/uwwroot/htdocs/exploitnes/
i 16box: /opt /oot /htdocs/exploi tnest 1s

exploitacot Of_exploiteds Otexploitacts

g ks Ol exploitac0d iEac, CES. workbook,pdf

The source code for this application is not here, but I have printed it to the right so you can understand it more easily. All it does is copy the user-supplied argument into a buffer with the dreaded strcpy function. It does not validate the user input at all.
Observing Normal Operation of the 01_exploitme01 Application

11. In the Bash window, type this command, and then press the Enter key:

./01_exploitme01 hello
The application returns to the bt exploitme001 # prompt with no error—it works fine.
Crashing the 01_exploitme01 Application – No Data

12. In the Bash window, type this command, and then press the Enter key:

./01_exploitme01
The application returns a "Segmentation fault" message, because when it has no input, strcpy crashes.

Crashing the 01_exploitme01 Application – Too Much Data

13. In the Bash window, type this command, and then press the Enter key (don't press the Enter key until the end, just hold down the Shift key and the A key until there are at least three lines full of A's.):

./01_exploitme01 AA
 The application returns a "Segmentation fault" message, as shown below on this page, because there are more than 256 characters in the input and it overruns the buffer.
[image: image3.jpg]cat exploitme00l.c

int main(int argc, char **argv, char **envp)
char buf [256] ;
strepy(buf, argv[1]);
return 0

Using Gnu Debugger to Analyze the Fault – No Data
14. In the Bash window, type this command, and then press the Enter key:

gdb 01_exploitme01
This launches the Gnu Debugger, which will show us exactly what is happening to cause the crash.

15. In the Bash window, you now see a gdb > prompt, indicating that you are inside the Gnu Debugger environment. Type this command, and then press the Enter key:

run
This launches the explopitme001 application with no input, which crashes and shows the message "Program received signal SIGSEGV, Segmentation Fault".

16. In the Bash window, at the gdb > prompt, type this command, and then press the Enter key:

main
This restarts the explopitme001 application with no input, but before it gets far enough to crash, it stops at "Breakpoint 1 at 0x804838d".

17. This command shows a lot of information about the program, as shown below on this page.

[image: image4.jpg]Is1@box: /opt/wwuroot/htdocs/exploitmes$ /0L exploitme0l

eqnentation Fault

18. First, look at the top section of the output. It shows the contents of the Registers – eax, ebx, ecx, edx, esi, edi, esp, ebp, eip, and others. These registers are used by the processor to store data temporarily. For our purposes, the most important register is eip – the Extended Instruction Pointer. This is the address of the current instruction being processed. If we can control the value in eip, we can trick the program into executing our code, and own the box.

19. The next two sections show the contents of the [stack] and [data] sections of memory at the time of the crash. This is binary data not easily interpreted, so skip it for now.

20. The bottom section shows the [code] that was executing when the program stopped. The specific machine language instruction that was being executed was:

and $0xfffffff0, %esp

This is not very interesting, because the program did not crash yet. The debugger just stopped here to we can see how things were when the program started.

21. In the Bash window, you now see a gdb > prompt, indicating that you are inside the Gnu Debugger environment. Type this command, and then press the Enter key:

run
This makes the application run further, so it crashes and shows the message "Program received signal SIGSEGV, Segmentation Fault".

22. Now the display shows the status of the computer when the fault occurred, as shown below on this page.

[image: image5.jpg]ydb> main

reakpoint, 1 at 0x304838d

ax:00000001 eb:40133FF4 ocx:00000001 ed<: 00000000
51100000000 edi$400150C0 esp:EFFFFOA0 _cbp:BFFFFABS
©510023 ds1002B esiO0ZB Fs:0000 gs:0000 ss:028 o

Flags100000286
©1p:08043380
dltszaPe

[0028: BFFFF 3RO [stack]
FFFFID0 : 70 PR FF BF 50 65 0L 40 - 01 00 00 00 40 83 01 40 p...PF.0....8,.8
FFFFSC0 © A4 B 01 40 70 FA FF BF - 84 FA FF BF 07 78 00 40 .F.Gp........0.8
FFFF380 © 53 61 20 00 14 83 01 40 - 02 00 00 00 F4 5F 01 40 8a .,..8,.1.1 (6
FFFFSA0 : C3 88 02 40 D3 I 02 40 - 00 00 00 00 00 00 00 00 ...6.,18,..0. .,

[0028:40015cC0]- {dtal
00500 £ 00 00 00 00 00 1000 00 = 10 04 02 00 E3 FB FF BF uvvvvreraras
0015CD0 : 04 00 00 00 10 33 01 40 - 03 00 00 00 64 00 00 00 1111116, 1d, L

(002308045380 code]
hB048380 naieD: and SOCPFFFERFO, desp
hBUE0 naint1D: mov 300, dewx
hBU4E5 naintlD: sub feaxdesp
XG4BT naint1D: mov Occlebp) deax
hB04E30n naim2D>: add 30cd, dew
hBU4E330 naimZ5>: mov (Heax) emx

x0804838d in main {

23. As before, the top section shows the contents of the Registers – eax, ebx, ecx, edx, esi, edi, esp, ebp, eip, and others.

24. The next two sections show the contents of the [stack] and [data] sections of memory at the time of the crash. This is binary data not easily interpreted, so skip it for now.

25. The bottom section shows the [code] that was executing when the program stopped. The specific machine language instruction that was being executed was:

movzbl (%edx), %eax

This command moves data from the memory location specified by the EDX register into the EAX register. But as you can see in the top [regs] section, edx contains 00000000. Memory location zero is not available for user programs—in fact, it's a virtual memory location. That's why the program crashed—it tried to access an illegal memory location—location 0.

Using Gnu Debugger to Analyze the Fault – Too Much Data

26. In the Bash window, at the gdb > prompt, type the run command followed by at least three lines full of capital As. The As will wrap around, and erase the run command on the screen, but don't let that bother you—the command is being properly understood by the system, even though it is not properly displayed on the screen. After you have at least three lines full of A's, as shown below on this page, press the Enter key.

run AAA
27. The results show this message "Program received signal SIGSEGV, Segmentation Fault.", as shown below on this page.

[image: image6.jpg]ydb> run

rogran received signal

SIGSEGY, Segnentation Fault,

2a;00000000 eb:40133FFA ook BFFFFAB0 ek 00000000
es1LBFFFFB0 edi1400150C0 esp:EFFFF334 cbp:BFFFFI3S
©510023 ds1002B esiO0ZB Fs:0000 gs:0000 ss:0028 o

Flags100010262
e1p:400854D0
ditszape

[0028: BrFFFasa] [stack]
FFFFSC4 © 70 FA FF BF 84 FAFF BF - 07 7B 00 40 70 FA FF BF pu.......d.Bp...
FFFF3B4 © 14 83 01 40 02 00 00 00 - F4 5F 01 40 Ad 66 01 40 16,10 10,16
FFFFSA4 £ 00 00 00 00 00 00 00 00 - 00 00 00 00 53 6120 00 11,0111 5a s
FFFF394 : 00 00 00 00 B3 FA FF BF - B1 83 04 08 B0 F3 FF BF L0101 111000

[0028: BrFrago] {dtal
FFFF3B0 : 53 6L 20 00 14 83 01 40 - 02 00 00 00 F4 5F 01 40 Sa0....._8
FFFFSC0 : A4 66 01 40 70 FA FF BF - 84 FA FF BF 07 7B 00 40 .F.6p........0.8

L0023: 40035410 code]

X400BGI0 <stropy+6:
400BEIGE <stropy+d:
4OUBBIGE <stropy+225:
AOUBBIAT <stropy+23:
x400BG4dS <stropy+28>:
x4008Gddh <stropy+27>:

novzbl (Hed), dex

wov L, (edc, deox, 1)

inc fedk

test fal, Zal

Jne 0i00BE4A0 <stropyrE>
hov desi deax

x400854d0 in strepy ()

bran 1 T s

28. [image: image7.jpg]ydb> run

RARRARARARRARARARRAR

‘rogran received signal SIGSEGH, Segnentation Fault,

ax:00000000 ebx: 401334 ecx:FFFFFIBS edxiBFFFFC2d | oflags;00010246
51100000000 edi$400150C0 esp:BFFFFSS0 ecbpidl4ldldl eip:dldldldl
©5:0023 ds1002B es1O0ZB 10000 gs:0000 ss:0028 odltsZaPec

0028 BrFFFas0] [stack]

FFFFS80 © 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 ARAAAAARAAAAAAAR
FFFFS70 © 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 ARARARAARARAAAAA
FFFFS60 © 4141 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 ARARAAAARARAAAAR

FFFFS50 : 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 ARARRARARARAARAA
0028: 40015000 [dstal
00500 £ 00 00 00 00 00 1000 00 = 1A 04 02 00 7D FA FF BF .vvvvssibion
0015CD0 : 04 00 00 00 10 33 01 40 - 03 00 00 00 54 00 00 00 11111116,.1d, 1L
0023 41414141 "code]
xé1414141: Error uhile running hook_stop:

arnot. acoess nenory at address Ox41414141

41414141 in 22 ()

First, look at the top section showing the Registers. Notice that the eip is now 41414141, and the ebp has the same value.

29. Look at the bottom of the output: it shows this message "Cannot access memory at address 0x41414141". 41 is the hexadecimal code for a capital A (see table to the right on this page), and as you can see in the [stack] section, there are a lot of A's in there. The long input, all A's, ran over the 256-byte buffer, and overwrote the memory locations in the stack that had been used to store the contents of the registers. So, when the function returned, it copied the data from the stack back onto the registers, changing the eip to 41414141—which is an illegal value. The program crashed because the buffer overrun made it lose its place, and it was no longer able to find the correct instruction to process next.
Using Inline Perl to Find the Location of the eip on the Stack

30. So we know how to crash the program. But what we want to do is to control its crash so it executes the code we inject. To do that we need to find out just how many As to put in. We could keep on typing long strings of As, but there's an easier way—insert perl commands into the argument, inside back-tic characters like this `. The ` key is on the upper left of your keyboard, under the ~.

31. In the Bash window, at the gdb > prompt, type this command and then press the Enter key.

run `perl -e 'print "A"x264 . "BBBB" . "CCCC"'`
32. This runs the program with a really long input string, containing 264 "A" characters, and then "BBBB", and then "CCCC". The results are shown below – the program has a "Segmentation Fault", and the message at the bottom shows the message "Cannot access memory at 0x43434343".

[image: image8.wmf]

Capturing a Screen Image
33. Look in the [regs] section, and verify that the eip is 43434343 (characters "CCCC").

34. Make sure the message "Cannot access memory at address 0x43434343" is visible at the bottom of the screen.

35. Press Ctrl+Alt to release the mouse from the virtual machine.

36. Press the PrintScrn key in the upper-right portion of the keyboard.

37. On the host Windows system, Click Start, Programs, Accessories, Paint. In the untitled - Paint window, select Edit, Paste from the menu bar.

38. In the untitled - Paint window, click File, Save. Select a Save as type of JPEG. Save the document with the filename Your Name Proj 11a.

39. Now we know how to overwrite the eip. All we need to do is to insert 264+4 characters before it in the input data, and the next 4 characters will be copied to the eip when the function returns.

Turning in Your Project
40. Email the JPEG images to me as attachments to one e-mail message. Send it to: cnit.124@gmail.com with a subject line of Proj 11 From Your Name, replacing Your Name with your own first and last name. Send a Cc to yourself.

Sources
Ch_11c: Smashing the Stack for Fun and Profit by Aleph One

http://insecure.org/stf/smashstack.html

Ch_11f: Video Tutorial for DVL Buffer Overflow Exploit

http://www.damnvulnerablelinux.org/images/stories/dvl/videos/First_Lesson_With_DVL/First_Lesson_With_DVL.html

Gray Hat Hacking : The Ethical Hacker's Handbook, by Shon Harris, Allen Harper, Chris Eagle, and Jonathan Ness, ISBN-10: 0072257091

Last Modified: 3-22-09[image: image9.jpg]ydb> run “perl -e ‘print’

x264 . "BEEI

» "Ceer

‘rogran received signal SIGSEGH, Segnentation Fault,

a:00000000 ebx: 401334 ecxiFFFFFIBD ediBFFFFL2d
51100000000 edi$400150C0 esp:BFFFFIB0 _cbp:42424242
©5:0023 ds1002B esiOOZB Fs:0000 gs:0000 ss:0028 o

Flags100010246
eip:d3434343
ditszaPe

[0028: BFFFF3B0]- [stack]
FFFFSEQ : 20 34 04 08 40 BC 00 40 - ECF3 FF BF E4 64 01 40 ,..0..0.....d.8
FFFFSD0 © 34 83 04 08 02 00 00 00 - F4 F3 FF BF C0 83 04 08 ;10,11 100,
FFFFS00 £ 02 0000 00 C0 82 04 08 - 00 00 00 00 EL 82 04 08 111111 1I1INN
FFFFSB0 : 00 00 00 00 F4 F3 FF BF - 00 FA FF BF F4 5F 01 4o .11 110 000

[0028:400iscco) {'dtal
O0I5CC0 £ 00 00 00 00 00 10 00 00 = 1A 04 02 00 T8 FA FF BF uovvvieraran
0015CD0 ; 04 00 00 00 10 33 01 40 - 0300 00 00 54 00 00 00 11 111116;.11d, 1L

[0023:43434343]- code]
x43434343: Error uhile running hook_stop:

arnot. acoess nenory at address Ox{3434343

%d43434343 in 72 ()

Character	ASCII Code	ASCII Code

	Decimal	Hex

	A	65	41

	B	66	42

	C	67	43

CNIT 124 Bowne
Page 7 of 7

