Ch 4: A Crash Course in x86 Disassembly

Basic Techniques

Basic static analysis

· Looks at malware from the outside

Basic dynamic analysis

· Only shows you how the malware operates in one case

Disassembly

· View code of malware & figure out what it does

Levels of Abstraction

[image: image1.png]Malware Author Malware Analyst

High-Level Language Low-level Language
int ¢ push ebp
printf("Hello.\n"); move ebp, esp
exit(0); sub esp, 0x40
CPU
Compler NodhineEads Disassembler
55
8B EC
88 EC 40

Figure 5-1. Code level examples

Six Levels of Abstraction

Hardware

Microcode

Machine code

Low-level languages

High-level languages

Interpreted languages

Hardware

Digital circuits

XOR, AND, OR, NOT gates

Cannot be easily manipulated by software

Microcode

Also called firmware
Only operates on specific hardware it was designed for

Not usually important for malware analysis

Machine code

Opcodes

· Tell the processor to do something

· Created when a program written in a high-level language is compiled

Low-level languages

Human-readable version of processor's instruction set

Assembly language

· PUSH, POP, NOP, MOV, JMP ...

Disassembler generates assembly language

This is the highest level language that can be reliably recovered from malware when source code is unavailable

High-level languages

Most programmers use these

C, C++, etc.

Converted to machine code by a compiler
Interpreted languages

Highest level

Java, C#, Perl, .NET, Python

Code is not compiled into machine code

It is translated into bytecode

· An intermediate representation

· Independent of hardware and OS

· Bytecode executes in an interpreter, which translates bytecode into machine language on the fly at runtime

· Ex: Java Virtual Machine

Reverse Engineering

Disassembly

Malware on a disk is in binary form at the machine code level

Disassembly converts the binary form to assembly language

IDA Pro is the most popular disassembler

Assembly Language

Different versions for each type of processor

[image: image2.png]CPU

Control
\ALU /4—» Unit [

]

i

Input/Output Devices

Main
Memory
(RAM)

Figure 5-2. Von Neumann architecture

x86 – 32-bit Intel (most common)

x64 – 64-bit Intel

SPARC, PowerPC, MIPS, ARM – others

Windows runs on x86 or x64

x64 machines can run x86 programs

Most malware is designed for x86

The x86 Architecture

CPU (Central Processing Unit) executes code

RAM stores all data and code

I/O system interfaces with hard disk, keyboard, monitor, etc.
CPU Components

Control unit

· Fetches instructions from RAM using a register named the instruction pointer

Registers

· [image: image3.png]Main
Memory

Low Memory Address
Stack

Heap

Code

Data

High Memory Address

Figure 5-3. Basic memory layout for a program

Data storage within the CPU

· Faster than RAM

ALU (Arithmetic Logic Unit)

· Executes an instruction and places results in registers or RAM

Main Memory (RAM)
Data

Values placed in RAM when a program loads

These values are static

· They cannot change while the program is running

They are also global

· Available to any part of the program

Code

Instructions for the CPU

Controls what the program does

Heap

Dynamic memory

Changes frequently during program execution

Program allocates new values, and frees them when they are no longer needed

Stack

Local variables and parameters for functions

Helps programs flow

Instructions

Mnemonic followed by operands

mov ecx 0x42

· Move into Extended C register the value 42 (hex)

mov ecx is 0xB9 in hexadecimal

The value 42 is 0x4200000000

In binary this instruction is

0xB942000000

Endianness

Big-Endian

· Most significant byte first

· 0x42 as a 64-bit value would be 0x00000042

Little-Endian

· Least significant byte first

· 0x42 as a 64-bit value would be 0x42000000

Network data uses big-endian

x86 programs use little-endian

IP Addresses

127.0.0.1, or in hex, 7F 00 00 01

Sent over the network as 0x7F000001

[image: image4.png]Table 5-3. The x86 Registers

General registers Segment registers Status register Instruction pointer

EAX (AX, AH, AL) €S EFLAGS EIP

EBX (BX, BH, BL) SS

ECX (CX, CH,CL) DS

EDX (DX, DH, DL) ES

EBP (BP) S

ESP (SP) [

ESI(SD)

Stored in RAM as 0x0100007F

Operands

Immediate

· Fixed values like –x42

Register

· eax, ebx, ecx, and so on

Memory address

· Denoted with brackets, like [eax]

Registers

General registers

· Used by the CPU during execution

Segment registers

· Used to track sections of memory

Status flags

· Used to make decisions

Instruction pointer

· [image: image5.png]EAX

326y | 1010 1001 1101 1100 1000 0001 1111 0101 | Binary
A 9 D C 8 1 5 Hex
AX
4 1000 0001 1111 0101
16 bits g 1 F 5
AH Al

8 bits

Figure 5-4. x86 EAX register breakdown

Address of next instruction to execute

Size of Registers

General registers are all 32 bits in size

· Can be referenced as either 32bits (edx) or 16 bits (dx)

Four registers (eax, ebx, ecx, edx) can also be referenced as 8-bit values

· AL is lowest 8 bits

· AH is higher 8 bits

 General Registers

Typically store data or memory addresses

Normally interchangeable

Some instructions reference specific registers

· Multiplication and division use EAX and EDX

Conventions

· Compilers use registers in consistent ways

· EAX contains the return value for function calls

Flags

EFLAGS is a status register

32 bits in size

Each bit is a flag

SET (1) or Cleared (0)

Important Flags

ZF Zero flag

· Set when the result of an operation is zero

CF Carry flag

· Set when result is too large or small for destination

SF Sign Flag

· Set when result is negative, or when most significant bit is set after arithmetic

TF Trap Flag

· Used for debugging—if set, processor executes only one instruction at a time

EIP (Extended Instruction Pointer)

Contains the memory address of the next instruction to be executed

If EIP contains wrong data, the CPU will fetch non-legitimate instructions and crash

Buffer overflows target EIP

Simple Instructions

mov destination, source

· Moves data from one location to another

We use Intel format throughout the book, with destination first

Remember indirect addressing

· [ebx] means the memory location pointed to by EBX

[image: image6.png]Table 5-4. mov Instruction Examples

Instruction

Description

mov eax, ebx

oxaz

[6x4037¢4]

[ebx]

Tebcvesival

Copies the contents of EBX into the EAX register

Copies the value 0x42 into the EAX register

Copies the 4 bytes at the memory location 0x4037C4 into the EAX
register

Copies the 4 bytes at the memory location speci
into the EAX register

d by the EBX register

Copies the 4 bytes at the memory location specified by the result of the
equation ebxresi*4 into the EAX register

lea (Load Effective Address)

lea destination, source

lea eax, [ebx+8]

· Puts ebx + 8 into eax

Compare

· mov eax, [ebx+8]

· Moves the data at location ebx+8 into eax

[image: image7.png]Figure 5-5 shows values for registers EAX and EBX on the left and the
information contained in memory on the right. EBX is set to 0xB30040.
At address 0xB30048 is the value 0x20. The instruction mov eax,,
[ebx+8] places the value 0x20 (obtained from memory) into EAX, and
the instruction Lea eax, [ebx+8] places the value 0xB30048 into EAX.

Registers Memory
EAX = 0x00000000 0x00B30040 [0x00000000
EBX = 0x00B30040~] 0x00B30044 | 0x63676862

0x00B30048 0x00000020
0x00B3004C 0x41414141

Figure 5-5. EBX register used to access memory

Arithmetic

sub Subtracts

add Adds

inc Increments

dec Decrements

mul Multiplies

div Divides

NOP

Does nothing

0x90

Commonly used as a NOP Sled

Allows attackers to run code even if they are imprecise about jumping to it

The Stack

Memory for functions, local variables, and flow control

Last in, First out

ESP (Extended Stack Pointer) – top of stack

EBP (Extended Base Pointer) – bottom of stack

PUSH puts data on the stack

POP takes data off the stack

Other Stack Instructions

[image: image8.png]Low Memory Address

Current Stack Frame

The stack grows Caller's Stack Frame
up toward 0

Caller's Caller's Stack Frame.

High Memory Address
Figure 5-7. x86 stack layout

All used with functions

· Call

· Leave

· Enter

· Ret

Function Calls

Small programs that do one thing and return, like printf()

Prologue

· Instructions at the start of a function that prepare stack and registers for the function to use

Epilogue

· Instructions at the end of a end of a function that restore the stack and registers to their state before the function was called

[image: image9.png]Low Memory Address

Current Stack Frame:

Caller's Stack Frame

Caller's Coller's Stack Frame.

0012F000
0012F004
00127008
0012F00C
00127010
00127014
0012018
0012F01C
0012F020
00127024
00127028

Locol Varioble N

0012F02C

0012F030

Locol Voriable 1

00127034

Locol Varigble 2

0012F038

High Memory Address

EBP

Old £8P

0012F03C

Return Address

00127040

Argument |

0012F044

Argument 2

0012F048

0012F04C

0012F050

Argument N

Figure 5-8. Individual stack frame

Conditionals

test

· Compares two values the way AND does, but does not alter them

· test eax, eax

Sets Zero Flag if eax is zero

cmp eax, ebx

· Sets Zero Flag if the arguments are equal

Branching

jz loc

· Jump to loc if the Zero Flag is set

jnz loc

· Jump to loc if the Zero Flag is cleared

C Main Method

Every C program has a main() function

int main(int argc, char** argv)

· argc contains the number of arguments on the command line

· argv is a pointer to an array of names containing the arguments

Example

cp foo bar

argc = 3

argv[0] = cp

argv[1] = foo

argv[2] = bar

Last modified 9-2-13
CNIT 126 – Bowne
Page 1 of 2
Fall 2013

