Ch 3: DNS Vulnerabilities

Updated 6-19-23

Causes of Vulnerabilities

- Configuration errors
- Architecture mistakes
- Vulnerable software implementations
- Protocol weaknesses
- Failure to use the security extensions in the protocol

DNS Architecture Mistakes

Single Point of Failure

- The SOA could be a single server at a single site
 - If the server crashes, clients would be unable to resolve any of the domains in the zone
 - Also Internet connection outage, power failure, fire, storm, etc.
- If a single server is the recursive resolver for clients in an intranet

- They'll all lose DNS service if it goes gown

Two Servers

- Many hosting providers do not allow delegation of DNS service to a single DNS server name
- End devices are typically provisioned with two DNS server addresses

nternet Protocol Version 4 (TCP/IPv4)	Properties ? X										
General Alternate Configuration											
You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.											
Obtain an IP address automatical	ly l										
Use the following IP address:											
IP address:											
Subnet mask:											
Default gateway:											
Obtain DNS server address autom	natically										
Ouse the following DNS server add	resses:										
Preferred DNS server:											
Alternate DNS server:											

Router or Link

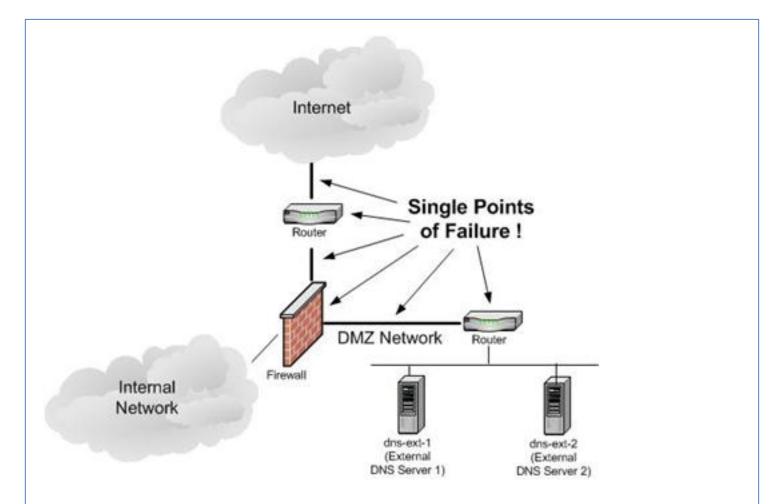
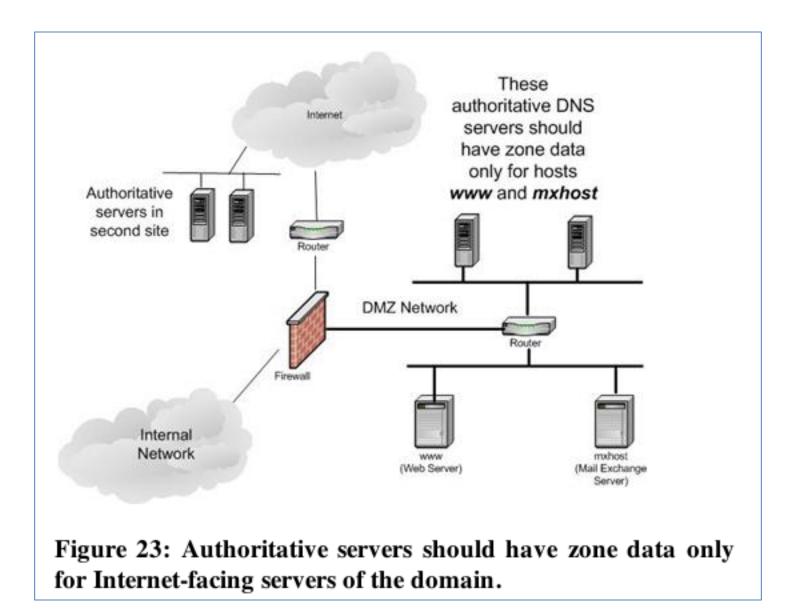


Figure 22: A DNS server architecture for DMZ servers with several router and link single points of failure. Such architecture should be avoided.


Data Center or Single Site

- If all DNS servers are at a single site or data center, a regional event could take them all down
 - Earthquake
 - Power failure
- The more critical the DNS service is, the more distributed servers should be
 - Geographically and topologically
 - Like the 13 root servers

Common Configuration Errors

Exposure of Internal Information

- Only public Web-facing servers should be in the external DNS zone files
- Your DNS server is a target of attack and may be compromised

Leakage of Internal Queries to the Internet

 Some Windows DHCP clients leak dynamic DNS updates to the Internet

 Link Ch 3a

ble 1: Logical steps of sending DNS updates (not all pac changes are shown)								
141	From	To	Content					
1	DHCP Clt	Broadcast	DHCP Request					
2	DHCP Srv	DHCP Clt	DHCP ACK: 192.168.0.2					
3	DHCP Clt	LDNS	Query: SOA? hostname.ex.com					
4	LDNS	DHCP Clt	Response: SOA dns.ex.com					
5	DHCP Clt	dns.ex.com	Update:A hostname.ex.com					
6	DHCP Clt	LDNS	Query:SOA? 2.0.168.192.in-addr.arpa					
7	LDNS	DHCP Clt	Response:SOA prisoner.iana.org					
8	DHCP Clt	prisoner	Update:PTR 2.0.168.192.in-addr.arpa					

Win Server 2008

- Stupid queries to see if private addresses are registered in public DNS
- Expose internal information

Source	Destination	Protocol	Length Sour	ce Port Info					
192.168.119.191	192.175.48.6	DNS	84	65105 Standard	query	0x416c 50	DA 119.	168.192.in-ad	ldr.arpa
192.168.119.191	192.175.48.6	DNS	84	65105 Standard	query	0x416c 50	DA 119.	168.192.in-ad	ldr.arpa
192.168.119.191	192.175.48.6	DNS	84	65105 Standard	query	0x416c 50	DA 119.	168.192.in-ad	ldr.arpa
192.168.119.191	192.175.48.6	DNS	84	65105 Standard	query	0x416c 50	DA 119.	168.192.in-ad	dr.arpa
192.175.48.6	192.168.119.191	DNS	161	53 Standard	query	response (0x416c	No such name	
192.168.119.191	192.175.48.1	DNS	162	52387 Dynamic (update	0x67a9 50	DA 168.	192.in-addr.a	arpa
192.168.119.191	192.175.48.1	DNS	162	52387 Dynamic	update	0x67a9 50	DA 168.	192.in-addr.a	arpa
192.168.119.191	192.175.48.1	DNS	162	52387 Dynamic	update	0x67a9 50	DA 168.	192.in-addr.a	arpa
192.168.119.191	192.175.48.1	DNS	162	52387 Dynamic	update	0x67a9 50	DA 168.	192.in-addr.a	arpa
192.175.48.6	192.168.119.191	DNS	161	53 Standard	query	response (0x416c	No such name	
192.175.48.6	192.168.119.191	DNS	161	53 Standard	query	response (0x416c	No such name	
192.175.48.6	192.168.119.191	DNS	161	53 Standard	query	response (0x416c	No such name	
192.175.48.1	192.168.119.191	DNS	80	53 Dynamic (update	response (0x67a9	Refused	
192.175.48.1	192.168.119.191	DNS	80	53 Dynamic	update	response (0x67a9	Refused	

Fixing the Problem

- To prevent this, configure local DNS servers not to refer internal machines to external name servers
 - And block DNS requests directly to the Internet

Unnecessary Recursiveness

- Not all name servers need to be recursive
 - Authoritative servers don't need to
 - Recursion is complex and burdens servers
 - Added function means more potential vulnerabilities
- Recursion may be on by default
 - Thousands of open recursive resolvers on the Internet

Failure to Restrict Access

- Recursive DNS servers should only accept queries from your own clients
 - Block outside addresses with access control lists

Testing for Open Resolvers

dig +short test.openresolver.com TXT @1.2.3.4

Testing CCSF's DNS Servers in 2023

• All are closed

	0	sambowne — -bash — 71×13	
Sam-2:~ sambowne\$ ns6.cenic.org. ns5.cenic.org. ns4.cenic.org.	dig +short	ns ccsf.edu] 🗖
ns3.ccsf.edu.			
[Sam-2:~ sambowne\$	dig +short	test.openresolver.com TXT @ns3.ccsf.edu	
[Sam-2:~ sambowne\$	dig +short	test.openresolver.com TXT @ns4.cenic.org	
[Sam-2:~ sambowne\$	dig +short	test.openresolver.com TXT @ns5.cenic.org	
[Sam-2:~ sambowne\$	dig +short	test.openresolver.com TXT @ns6.cenic.org	
[Sam-2:~ sambowne\$			
[Sam-2:~ sambowne\$	dig +short	test.openresolver.com TXT @1.1.1.1	
"open-resolver-det	ected"		
Sam-2:~ sambowne\$			

Unprotected Zone Transfers

- Data transfers from a master to a slave authoritative server

 Update the zone files on the slave
- Can be requested by any other host
- Reveals information about all hosts in the zone
 - Information disclosure vulnerability

North Korea

North Korea .kp TLD Zone Data

On Sept 19, 2016 at approximately 10:00PM (PDT), one of North Korea's top level nameservers was accidentally configured to allow global DNS zone transfers. This allows anyone who performs an AXFR (zone transfer) request to the country's ns2.kptc.kp nameserver to get a copy of the nation's top level DNS data. This was detected by the TLDR Project - an effort to attempt zone transfers against all top level domain (TLD) nameservers every three hours and keep a running Github repo with the resulting data. This data gives us a better picture of North Korea's domains and top level DNS.

Link Ch 3i

Running Server in Privileged Mode

- root on Unix/Linux
- Administrator on Windows
 - Makes any security flaws more dangerous
 - Attacker who owns DNS then owns the server

Weakness in Software Implementations

- DNS servers have bugs and vulnerabilities
 - Buffer overflows
 - Other errors
- Search CVE List for "ISC Bind"
- <u>https://cve.mitre.org/cgi-bin/cvekey.cgi?</u>
 <u>keyword=isc+bind</u>

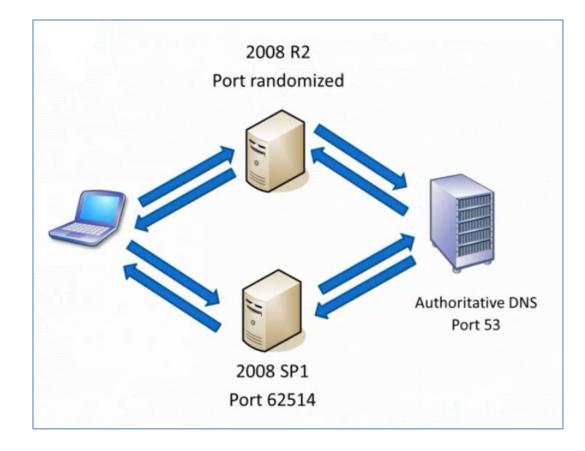
•	CVE - Search Results	+				م
	< > C ==	cve.mitre.org/cgi-bin/cveke	ey.cgi	(NIPROMPTS) 😥 🙆 🛇	> ♡ 2 ± ≢
	CV	⊗ CVE List v	CNAs ▼ About ▼	WGs ▼ News & Blog ▼	Board -	Go to for: <u>CVSS Scores</u> CPE Info
රා 	Search C	VE List Downloads	Data Feeds IDs	Update a C	VE Record	Request CVE
Ů		то	TAL CVE Records	: <u>204671</u>		
_ ©	NOTICE: Tra	nsition to the all-new CVE	website at <u>WWV</u> underway.		E Record Format	<u>: JSON</u> are
1		NOTICE: Changes are c	oming to <u>CVE Lis</u> t	t Content Downloa	<u>ids</u> in 2023.	
0	HOME > CVE > SEA	RCH RESULTS				
—	Search Re	sults				
0	There are 87 CVE	Records that match your sea	arch.			
\triangleright	Name		De	scription		
—	CVE-2022-38178	By spoofing the target resolution can trigger a small memory where named crashes for lac	leak. It is possible			
\odot	CVE-2022-38177	By spoofing the target resolution can trigger a small memory where named crashes for lac	leak. It is possible			
—	CVE-2022-3080	By sending specific queries	to the resolver, an a	attacker can cause n	amed to crash.	
Q	<u>CVE-2022-2906</u>	An attacker can leverage this crashes for lack of resources there is the potential to den	s. Upon restart the			
	<u>CVE-2022-2881</u>	The underlying bug might caread, or crash the process.	ause read past end	of the buffer and eit	ther read memory	it should not
	<u>CVE-2022-2795</u>	By flooding the target resolv the resolver's performance, service.				

Severe 2008 Bind Vulnerability

CVE-2008-0122

VU#203611

Summary: Off-by-one error in the inet_network function in libbind in ISC BIND 9.4.2 and earlier, as used in libc in FreeBSD 6.2 through 7.0-PRERELEASE, allows context-dependent attackers to cause a denial of service (crash) and possibly execute arbitrary code via crafted input that triggers memory corruption.


Published: 01/16/2008

CVSS Severity: <u>10.0</u> (HIGH)

- Attack used an IP address like
 1.2.3.4.xxxxxx-exploit-code-here-xxxx
- Another list of DNS vulns at link Ch 3d

Source Port Randomization

- Good video
- Link Ch 3e

Randomness of Transaction ID

- Each DNS query and response has a TXID field
 - 16 bits long (65,536 possible values)
 - Should be random
- Bind 8 & 9 used predictable transaction IDs
 - So only ten guesses were needed to spoof the reply

Randomness of Transaction ID

i Fi	lter:	dns				•	Expres	sion	Clea	r A	pply	Save	GETI
No.	Time	Source	Destination	Protocol	Length	Transact	ion ID	Info					
31	0.0530	10.0.0.3	8.8.8.8	DNS	96	0xc668		Standard	query	0xc668	A us-cou	rier.pus	h-apple
72	0.0859	8.8.8.8	10.0.0.3	DNS	224	0xc668		Standard	query	response	0xc668	A 17.14	9.36.18
143	0.2468	10.0.0.3	8.8.8.8	DNS	77	0x848e		Standard	query	0x848e	A web.tv	/eetdeck.	com
144	0.2818	8.8.8.8	10.0.0.3	DNS	118	0x848e		Standard	query	response	0x848e	CNAME t	d.twitt
145	0.2820	10.0.0.3	8.8.8.8	DNS	77	0x78b5		Standard	query	0x78b5	AAAA web	.tweetde	ck.com
147	0.3183	8.8.8.8	10.0.0.3	DNS	174	0x78b5		Standard	query	response	0x78b5	CNAME t	d.twitt
425	1.9720	10.0.0.3	8.8.8.8	DNS	107	0xe93d		Standard	query	0xe93d	A e3191.	dscc.aka	maiedge
426	2.0101	8.8.8.8	10.0.0.3	DNS	123	0xe93d		Standard	query	response	0xe93d	A 23.20	0.221.1
450	7.1985	10.0.0.3	8.8.8.8	DNS	69	0x6e48		Standard	query	0x6e48	A yahoo.	com	
451	7.2364	8.8.8.8	10.0.0.3	DNS	117	0x6e48		Standard	query	response	0x6e48	A 98.13	9.183.2
▲													
▶ Fr	ame 31	: 96 bytes	on wire (768	bits), 96	bytes ca	aptured (768 bit:	s) on int	erface	0			
Þ Et	hernet	II, Src: A	pple_4f:2b:55	6 (28:cf:e	9:4f:2b:5	55), Dst:	Techni	co_44:3a:	b0 (cc	:35:40:4	4:3a:b0)		
Þ In	ternet	Protocol V	ersion 4, Sro	: 10.0.0.	з (10.0.0	0.3), Dst	: 8.8.8	.8 (8.8.8	3.8)				
∣ ÞUs	er Data	agram Proto	col, Src Port	: 55257 (55257),[Ost Port:	53 (53)					
🔽 Do	main N	ame System	(query)										
1	[Respo	nse In: 72]	_										
1	Transa	ction ID: 0	0xc668										
	Flags:	0x0100 Sta	andard query										
	Questions: 1												
		RRs: 0											
	Authority RRs: 0												
	Additi	onal RRs: 0)										
⊳	▷ Queries												

Tricking a Target into Using Your DNS Server

- Run a domain *evil.com* with a SOA you control *ns1.evil.com*
 - Send the target an email with a link to server.evil.com and hope someone clicks it
 - Send email from *joe@evil.com* to target email address
 - The server will automatically perform a reverse lookup to detect spam

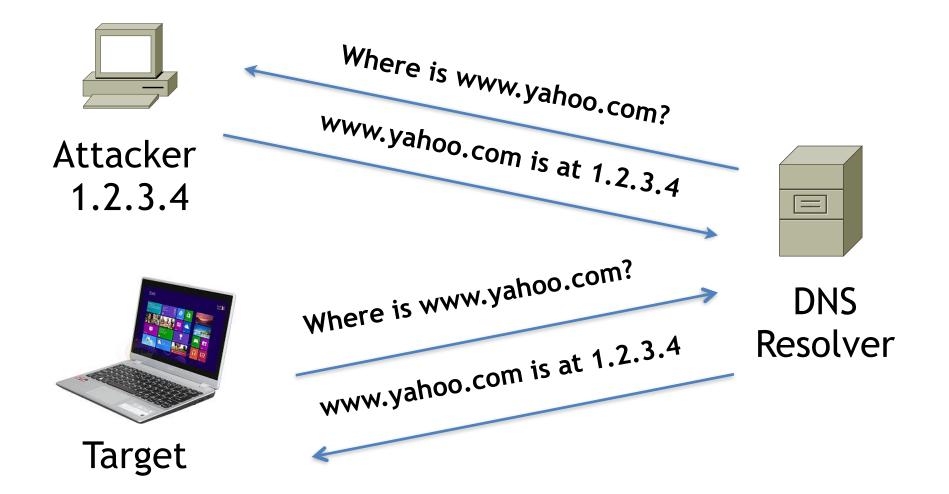
Tricking a Target into Making Multiple DNS Queries

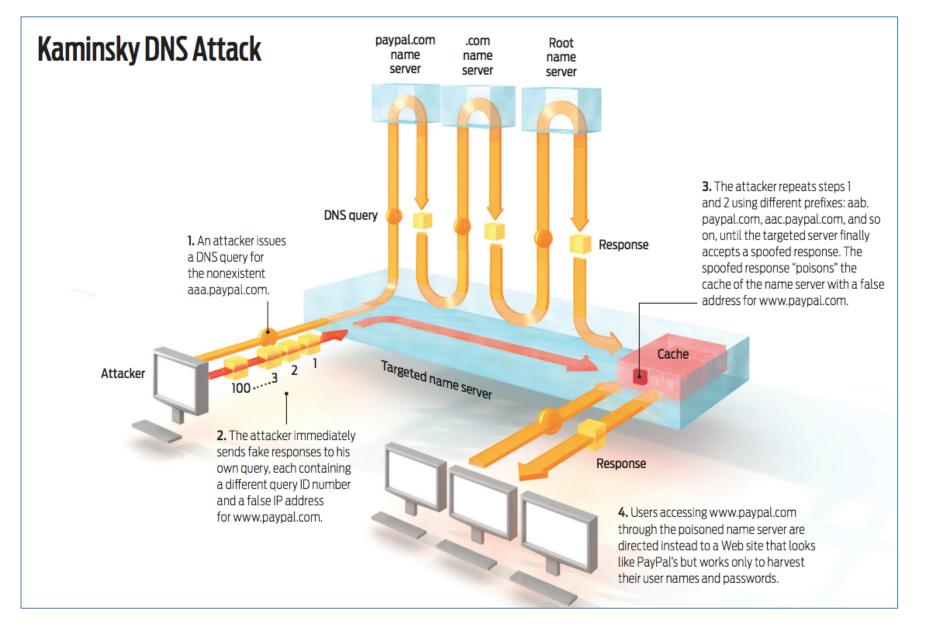
- CNAME Chaining
 - www.evil.com is a CNAME for www1.evil.com
 - www1.evil.com is a CNAME for www2.evil.com
 - www2.evil.com is a CNAME for www3.evil.com
 - -etc.

Tricking a Target into Making Multiple DNS Queries

- NS Referral Chaining and NS Chains
 - a.a.a.a.evil.com has SOA ns.evil.com
 - ns.evil.com delegates to ns.a.evil.com
 - *ns.a.evil.com* delegates to *ns.a.a.evil.com etc.*

Protocol Design Weaknesses


Weak Authentication


- DNS uses these elements to match a request and a response
 - Transaction ID (16 bits)
 - Question
 - Source and destination IP
 - Source and destination ports
 - But request destination port is known (53)
- Client accepts the first response that meets these criteria, and caches the result

DNS Cache Poisoning

• A false response that tricks the client puts a false entry into its cache

DNS Cache Poisoning

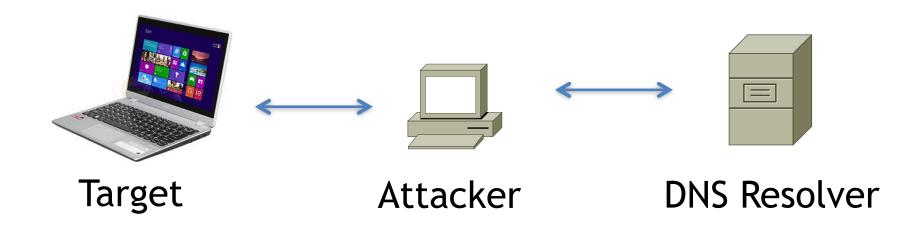
Link Ch 3f

Imagine that a resolver asks for the IP address of doesnotexist.example.com. An attacker sends back a response that looks like this:

```
$ dig doesnotexist.example.com
;; ANSWER SECTION:
doesnotexist.example.com. 120 IN A 10.10.10.10
;; AUTHORITY SECTION:
example.com. 86400 IN NS www.example.com .
;; ADDITIONAL SECTION:
www.example.com . 604800 IN A 10.10.10.20
```

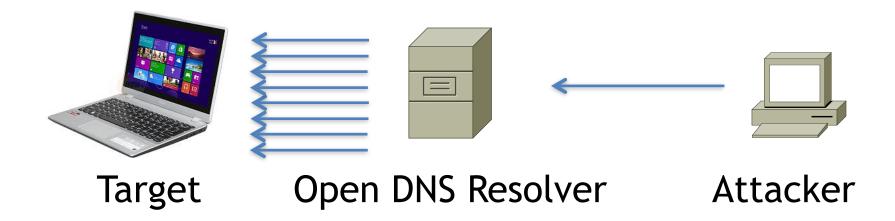
An attacker is trying to trick the resolver into believing that **www.example.com** now lives at 10.10.10.20, and to remember that for 604800 seconds (7 days). This

• Link Ch 3g


Consequences of the Kaminsky Attack

- Attack can be placed in a Web page
 - Many img tags
 -
 -
 -
 -
 - etc.
- If one Comcast customer views that page, all other Comcast customers will be sent to the fake paypal.com
- Poisoning can take as few as 10 seconds

Man-in-the-Middle Attacks


 Attacker in the middle has enough info to perfectly forge responses

 Unless DNSSEC is used

DNS as a DoS Amplifier

- Small requests lead to large responses
- UDP allows spoofing the source IP address

