Ch 4: Monitoring and Detecting Security Breaches

Updated 9-7-23

Monitoring

- Four useful types of data
 - Log data
 - Network flow data
 - Packet data
 - Application level metadata

Log data

Types of Log Data

- Format errors in queries
- Lame delegations
 - Referral from a parent zone to an invalid name server for the child zone
- Queries for nonexistent domains

BIND's Logging in named.conf

```
logging {
   [ channel channel name {
     ( file path name
         [ versions ( number | unlimited ) ]
         [ size size spec ]
        syslog syslog facility
        stderr
       | null );
     [ severity (critical | error | warning | notice |
                 info | debug [ level ] | dynamic ); ]
     [ print-category yes or no; ]
     [ print-severity yes or no; ]
     [ print-time yes or no; ]
   }; ]
   [ category category name {
     channel name ; [ channel name ; ... ]
   }; ]
   . . .
};
```

Clauses

- Channel
 - Defines output medium, such as files, syslog, stderr, or null to eliminate output
- Versions
 - Max. number of files that can be used
 - Files are rolled when "size" is reached
- Severity
 - "critical" logs only critical events
 - "info" stores much more
- Print
 - print-time, print-severity, print-category
 - Controls what is printed (link Ch 4a)

- queries
 - Logs client IP & port, question name, type and class of query
 - Useful to record which hosts are querying for what domains
 - + indicates recursive query
 - S indicates signed query
 - E indicates Extended DNS (EDNS)

```
Example:
12-Sep- 15:45:49:053 queries: info: client
192.168.0.100#1876: query: www.example.com IN A +SE
```

- security
 - Requests that were denied
 - Rejected by access control lists (ACLS) that define which hosts are allowed to send queries, zone transfers, etc.
 - ACLs are set using these options statements
 - allow-query
 - allow-recursion
 - allow-transfer

14-Sep- 22:06:38.524 security: debug 3: client 127.0.0.1#58896: recursion not available 14-Sep- 22:06:38.524 security: debug 3: client 127.0.0.1#58896: query (cache) 'example.com/A/IN' approved

- update-security
 - Denied requests to update DNS zone data dynamically, because of ACLs or policies
 - ACLs and policies defined with
 - allow-update
 - allow-update-forwarding
 - update-policy
 - BIND tool "nsupdate" generates dynamic updates

20-Sep 21:21:11.499 update-security: info: client 127.0.0.1#42445: update 'ppdev.net/IN' denied

- dnssec
 - Only works if DNS server supports DNSSEC and is configured to perform record validation
 - DNSSEC statements
 - dnssec-enable
 - dnssec-validation

DNSSEC Example

Line prefix omitted in figure below
 – Date dnssec: debug 3:

validating @0xb904ace8: nist.gov A: starting validating @0xb904ace8: nist.gov A: attempting positive response validation validating @0xb904c510: nist.gov DNSKEY: starting validating @0xb904c510: nist.gov DNSKEY: attempting positive response validation validating @0xb904c510: nist.gov DNSKEY: verify rdataset (keyid=41227): success validating @0xb904c510: nist.gov DNSKEY: signed by trusted key; marking as secure validator @0xb904c510: dns_validator_destroy validating @0xb904ace8: nist.gov A: in fetch_callback_validator validating @0xb904ace8: nist.gov A: keyset with trust 7 validating @0xb904ace8: nist.gov A: resuming validate validating @0xb904ace8: nist.gov A: verify rdataset (keyid=63462): success validating @0xb904ace8: nist.gov A: werify rdataset (keyid=63462): success validating @0xb904ace8: nist.gov A: marking as secure validator @0xb904ace8: nist.gov A: marking as secure

- xfer-in
- xfer-out
 - Report zone transfers

```
25-Sep 14:12:12.179 xfer-out: info: client
127.0.0.1#38077: transfer of 'ppdev.net/IN': AXFR
started
25-Sep 14:12:12.186 xfer-out: info: client
127.0.0.1#38077: transfer of 'ppdev.net/IN': AXFR ended
```

Packet Data

SPAN Port

- Capture packets with *tcpdump* or *Wireshark*
- From a SPAN port on a router or switch

 Provides a copy of every packet
- Or use an optical or electronic splitter
 Or a hub
- Data sent to a server that captures and stores all the packets
- Usually uses *libpcap* or *WinPcap* with standard pcap format

Network Flow Data

Flow Data

- Summarized record of a network traffic session
- Packets with common characteristics

 Source and destination IP, Port, and Protocol
- Each flow typically goes in only one direction
- NetFlow
 - Originally developed by Cisco
 - Standardized by IETF as IP Flow Information Export (IPFIX)

Packet Grouping

- TCP sessions
 - Export flow as soon as session ends with FIN or RST
- UDP traffic
 - Must guess when flow ends
 - Activity timer expiration exports after a period of time, even if flow is still in progress
 - Inactivity times generates a flow record when there is inactivity for a period of time

Flow Records

- Don't contain a complete summary of a session between two hosts
- Very long sessions, or sessions with periods of inactivity, may appear in multiple flow records

Router1,10.173.163.76,10.246.128.147,171,8313, 1255112063,1255233063,64126,41450,26,6

where the fields correspond to: Router name, Source IP address, Destination IP address, number of packets transferred, number of bytes transferred, UTC start time of flow in seconds since 1/1/1970, UTC end time, source port, destination port, cumulative TCP flags (in decimal representation), and protocol number.

Application-Level Metadata

Metadata

- Flow records provide very little information
- Packet data are overwhelming, containing too much data
 - Also raise privacy concerns
- Application layer metadata
 - Keeps some packet fields from application and other layers

Domain, A_record, first_time, last_time, number_of_responses www.example.com,10.20.30.40, Jan 1 2009, June 30 2010, 15288

Detection

Cache Poisoning Attack Detection

- Brute force attempts to guess Transaction ID and Source Port
 - Of a query from a recursive DNS server to an authoritative server
- First, attacker makes a request for a record that is not cached
 - Then blasts server with spoofed responses with many Transaction ID and Source Port values

Flow Records

Keep flows with source or destination port
 53 (TCP or UDP) and source or destination
 IP of the DNS server

Table 5: Example of a sequence of flow records indicating a possible cache poisoning attack.

Sip	Dip	Sport	Dport	Stime	Etime	Pkts	Bytes	Proto
10.10.5.100	10.10.1.1	1024	53	0.000	0.000	1	70	17
192.168.0.50	10.10.1.1	53	1024	0.001	0.001	1	90	17
192.168.0.50	10.10.1.1	53	1024	0.002	0.002	1	90	17
192.168.0.50	10.10.1.1	53	1024	0.003	0.003	1	90	17
192.168.0.50	10.10.1.1	53	1024	0.004	0.004	1	90	17
192.168.0.50	10.10.1.1	53	1024	0.005	0.005	1	90	17
192.168.0.50	10.10.1.1	53	1024	0.006	0.006	1	90	17

Limitations of Flow Records

- No Layer 7 data

 Such as the DNS request
- Cannot pinpoint the domains being targeted
- Or the addresses being injected

Selecting Relevant Data

- DNS requests are irrelevant
- Poisoning is performed by replies
- Data needed
 - Source & destination IP
 - Domain name in the question section
 - Answer, authority, and additional sections
 - Transaction ID
 - Timestamp
 - Only include authoritative replies (AA set)

Transient Domains

- Resolve to a small number of IP addresses
- Change over hours or days
- IP addresses are not owned by the same autonomous system (AS)
- Typically they are botnet controllers, malware downloads, or file drop sites
- Could be an innocent software bug, or a security research site

Identifying Transient Domains

- Collect DNS traffic with
 - Small TTLs
 - Collect at peering links to other AS networks
- Record
 - Domain that was queried
 - Answer given
 - Timestamp
 - Exclude client IP address for privacy

Round-Robin DNS

- If there's more than one A record
 - The order changes for each request
 - Link Ch 4b
- This is the default for most DNS servers
- Demo:
 - dig a +noall +answer <u>yahoo.com</u>
 - Repeat a few times

	📴 sambowne —		
Sam—2:~ sambowne\$ di	a +noall +an	swer yahoo.com	m
/ahoo.com.	1293 IN	Α	98.137.11.163
/ahoo.com.	1293 IN	Α	74.6.143.26
/ahoo.com.	1293 IN	Α	34.225.127.72
/ahoo.com.	1293 IN	Α	74.6.143.25
/ahoo.com.	1293 IN	Α	54.161.105.65
/ahoo.com.	1293 IN	Α	74.6.231.20
/ahoo.com.	1293 IN	Α	74.6.231.21
/ahoo.com.	1293 IN	Α	98.137.11.164
Sam—2:~ sambowne\$ di	a +noall +an	swer yahoo.com	m
/ahoo.com.	1307 IN	Α	74.6.231.21
/ahoo.com.	1307 IN	Α	98.137.11.163
/ahoo.com.	1307 IN	Α	74.6.143.26
/ahoo.com.	1307 IN	Α	54.161.105.65
/ahoo.com.	1307 IN	Α	34.225.127.72
/ahoo.com.	1307 IN	Α	74.6.143.25
/ahoo.com.	1307 IN	Α	98.137.11.164
/ahoo.com.	1307 IN	Α	74.6.231.20
am—2:~ sambowne\$ di	a +noall +an	swer yahoo.com	m
/ahoo.com.	1305 IN	Α	74.6.231.21
/ahoo.com.	1305 IN	Α	98.137.11.163
/ahoo.com.	1305 IN	Α	74.6.143.26
/ahoo.com.	1305 IN	Α	54.161.105.65
ahoo.com.	1305 IN	Α	34.225.127.72
/ahoo.com.	1305 IN	Α	74.6.143.25
/ahoo.com.	1305 IN	Α	98.137.11.164
/ahoo.com.	1305 IN	Α	74.6.231.20
Sam-2:~ sambowne\$			

Fast Fluxing Domains

- TTLs set to a few seconds
- IP changes rapidly
- Purposes
 - Evade detection
 - Resilience: maintain control of a botnet despite attempts to block malicious traffic

Example from Conficker

A

65.118.223.203

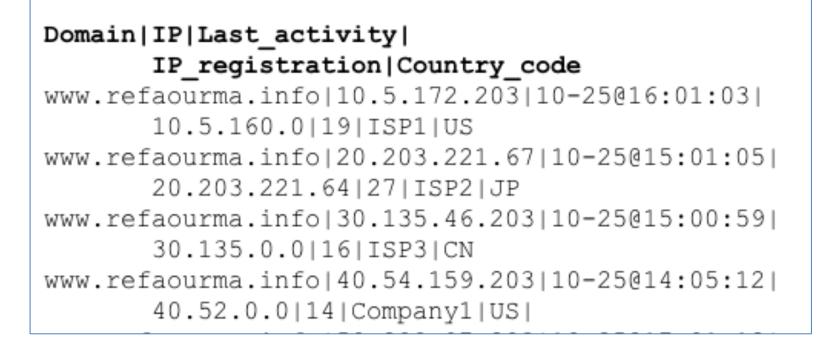
Answer at time 0

- www.refaourma.info. 60 IN A 65.54.40.75
- www.refaourma.info. 60 IN
- www.refaourma.info. 60 IN A 65.130.228.46

Answer 28 sec. later

- www.refaourma.info. 32 IN A 65.130.228.46
- www.refaourma.info. 32 IN A 65.54.40.75
- www.refaourma.info. 32 IN A 65.118.223.203

Example from Conficker


Answer at 56 sec.

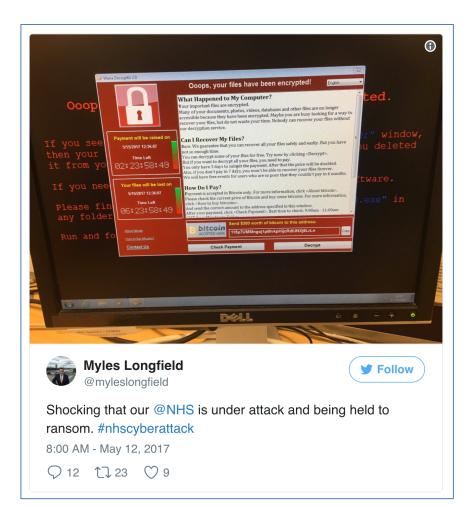
- www.refaourma.info. 4 IN A 65.118.223.203
- www.refaourma.info. 4 IN A 65.130.228.46
- www.refaourma.info. 4 IN A 65.54.40.75

Answer at 83 sec.

- www.refaourma.info. 32 IN A 209.17.184.203
- www.refaourma.info. 32 IN A 209.228.250.75
- www.refaourma.info. 32 IN A 209.229.142.35
- When cache expires, IP addresses are all new

Detecting Fast-Flux Domains

Phantom Domains


- Register a domain
- Use it for only a few hours or days
- Defends malware against *sinkholing*
 Resolving to an address that offers no service
- Works best with domain registrars who offer a free trial period

Detecting Phantom Domains

- Find domains that have been active recently
- Find current addresses
- Find domains with no matching historical IP addresses
- Find records with very different IP addresses for the same domain

Wannacry Ransomware

- Caused hospitals across England to divert emergency patients in May 2017
- Used NSA-developed attacks leaked by "Shadow Brokers" (Russians)
- Microsoft released a patch but hospital systems didn't install it in time
 - Link Ch 1y

How to Accidentally Stop a Global Cyber Attacks

② May 13, 2017 ▲ MalwareTech ♥ ms17-010, ransowmare, worm ♀ 442

have to be propagated using another method). I was quickly able to get a sample of the malware with the help of Kafeine, a good friend and fellow researcher. Upon running the sample in my analysis environment I instantly noticed it queried an unregistered domain, which i promptly registered.

Darien Huss

#WannaCry propagation payload contains previously unregistered domain, execution fails now that domain has been sinkholed 10:29 AM - May 12, 2017

• Link Ch 1z1

Conficker Worm Domains

- Algorithm made
 50,000 new
 domains per day
- Registrars tried to block them all

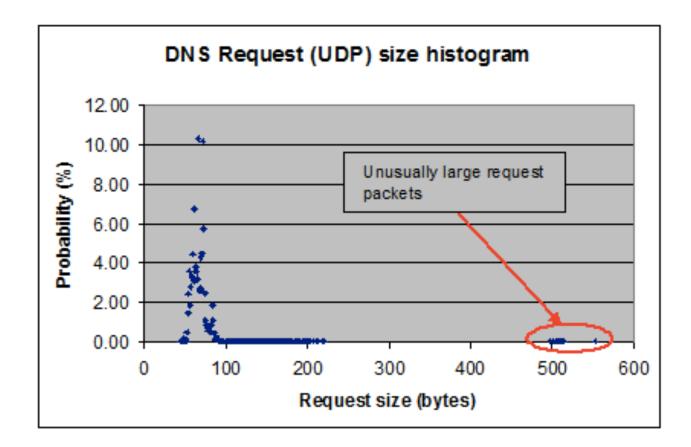
– Links Ch 1u, 1v

٧aı	riant,	Date,	Ind	dex, Hostname
А,	02/12	/2009,	Ο,	puxqy.net
А,	02/12	/2009,	1,	elvyodjjtao.net
А,	02/12	/2009,	2,	ltxbshpv.net
А,	02/12	/2009,	З,	ykjzaluthux.net
А,	02/12	/2009,	4,	lpiishmjlb.net
А,	02/12	/2009,	5,	arpsyp.com
А,	02/12	/2009,	6,	txkjngucnth.org
А,	02/12	/2009,	7,	vhslzulwn.org
А,	02/12	/2009,	8,	jcqavkkhg.net
А,	02/12	/2009,	9,	dmszsyfp.info
•	••			
-	00/10	(2000	•	
				tvxwoajfwad.info
-		-	-	blojvbcbrwx.biz
				wimmugmq.biz
в,	02/12	/2009,	З,	fwnvlja.org
в,	02/12	/2009,	4,	umgrzaybbf.ws
в,	02/12	/2009,	5,	btgoyr.cc
в,	02/12	/2009,	6,	zboycplmkhc.cc
в,	02/12	/2009,	7,	qsqzphbn.biz
в,	02/12	/2009,	8,	xqdvmavs.cn
в,	02/12	/2009,	9,	wgrrrr.biz

Corrupted Local DNS Server Settings (DNS Changer)

- Redirect victims to evil DNS server
- Most resolutions are correct
- Some lead to fake websites
 - Such as banking sites, antivirus sites, etc.

Detecting DNS Changers


- Recursive DNS requests to suspicious remote addresses
 - Not in ISP's address range
 - Not a known public DNS server
 - Are in an IP address blacklist
 - Associated with transient, fast-flux, phantom, sinkholed or blacklisted domain
 - Located more than 1000 miles away
 - Have no forward DNS domains

Tunneling

- Firewalls allow port 53 through
- Malware can phone home via port 53
- Covert channels via DNS traffic
 - Even embedded in fields of legitimate-looking DNS packets, such as DNSSEC keys or signatures

Detecting Tunneling

• Large UDP Request packets (>300bytes)

DoS Attacks

- Attacks against the DNS server
 - TCP or UDP flood
 - SYN flood
 - Spoofed source addresses or botnets

DoS Attack Detection

- Watch for these to be different from baseline
 - Incoming bits/sec and outgoing bits/sec
 - Imbalance indicates an attack
 - DNS requests/sec (TCP and UDP)
 - TCP SYN/sec
 - Incoming TCP and UDP packets/sec
 - ICMP incoming and outgoing packets/sec and bits/sec

