Machine Learning
Security

OREILLY

Hands-On
. Machine Learning
10 Introduction to \lzrith sggrit-Lea;?,
m g = eras ensorriow
Artificial Neural Networks

with Keras

Made Oct 21, 2023

Artificial Neural Networks (ANNs)

* Inspired by our brains
 ANNSs are at the very core of deep learning
* Versatile, powerful, and scalable; used by
 Google Images
* Apple's Siri
* Youlube

Topics

- From Biological to Artificial Neurons

- Biological Neurons

- Logical Computations with Neurons

* The Perceptron

- The Multilayer Perceptron and Backpropagation
- Regression MLPs

- Classification MLPs

- Implementing MLPs with Keras

* Fine-Tuning Neural Network Hyperparameters

From Biological to Artificial Neurons

History of ANNs

* Introduced in 1943 for propositional logic
* Long winter for ANNs

* |In 1990s, other ML systems were developed, such as support
vector machines

e Now there's a new wave of interest in ANNs

The Case for ANNs

 Huge quantity of data now available
 ANNSs often outperform on very large and complex problems
* TJraining algorithms have improved

* Theoretical problems like local minima turned out to be benign In
practice

* Local optima often almost as good as the global optimum

 ANNSs have entered a virtuous cycle of funding and progress

Biological Neurons

Biological Neurons

* dendrites are the branching extensions

e axon carries the output signal far away

Cell body
Axon Telodendria 7 ‘]
Nucleus / ,‘
Axon hillock Synaptic terminals

Golgi apparatus

. N by
T
Endoplasmic /4
reticulum _

-
Mitochondrion Dendrite

| Dendritic branches

Biological Neurons

e Short electric pulses called action potentials travel along the
axons and release neurotransmitters at the synapses

* When a neuron receives enough neurotransmitters, it fires

Cell body
Axon Telodendria ' ‘ T
Yar.

Nucleug\(/‘f ”;(|

Axon hil% Synaptic terminals

.

\ o
‘ . d
' ¢
A\ 9%

™
-

Golgi apparatus
Endoplasmic ,
reticulum

Mitochondrion Dendrite

Dendritic branches

Biological Neural Networks

e Each neuron is simple

e Computations are done by the network of many neurons working
together

e This is a sample of human cortex

3 -
. — .

- -
- — -4 = . % ree ‘i.' W '
SIS e A

s E— — — W d o . _'. - ~ gt _—
R S e 0, sy mu i se v AR

— — -—— BT o 3 e e .
e T X
- \ I8 AL

- -

Logical Computations with Neurons

Logical Computations with Neurons

« Simple On/Off neurons act like logic gates

Neurons Connection
/

1 <>
n un n

The Perceptron

The Perceptron

 Developed in 1957
* Neurons are
 Threshold Logic Units (TLUs) or
* Linear Threshold Units (LTUs)
 Computes a linear function of inputs

Z=wixi1+w2x2+---+wnxn+b=wrx+b>b

* Applies a step function to the result
hw(x) = step(z)

TLU (Threshold Logic Unit)

 One TLU can perform

Output: h.,, .(x)=step(w ' x+
binary classification P (x)=step()

Step function: step(z)

Linear function: z=w'x+

* |nput data like petal
width and height

e QOutput sorts inputs into
two categories

e Training will determine
the correct weights w
and bias b X X5 X3 Inputs

Perceptron

 Alayer of TLUs Outputs

* Every TLU is
connected to every

iInput)
1 Qutput layer

 fully connected
layer or

e dense layer

* Inputs are called

; \
the input layer X X yInput layer

e TLUs are the Inputs /
output layer

Perceptron

* This perceptron
can classify
Instances into
three classes

Outputs

Training a Perceptron

 Hebb's rule or Hebbian Learning
 When a neuron triggers another neuron often
* The connection between them gets stronger
e "Cells that fire together, wire together”

* Perceptrons use the error of a prediction also

* Reinforces connections that reduce error

Training a Perceptron
 Resembles stochastic gradient descent

A

(next step) __ W;.; +n (y] _ y]) T

wi,j
In this equation:
e wi, j is the connection weight between the ith input and the jth neuron.
e xi is the ith input value of the current training instance.
. Yi is the output of the jth output neuron for the current training instance.
o yjis the target output of the jth output neuron for the current training instance.

e n is the learning rate (see Chapter 4).

Limitations of a Perceptron

» Calculation is linear in all inputs

 Cannot compute XOR
7X1 =0x1=1

x2=0
x2=1

0 1
1 0

Two Perceptron Layers Can Do XOR

* |nputs at bottom
* All weights 1; Bias: -3/2 and -1/2

 Each neuron outputs with a step
function

e |f >0, output 1
* |[f <=0, output O

Two Perceptron Layers Can Do XOR

0
0+0-1/2=-1/2

0 0
0+0-3/2=-1.5 0+0-1/2=-0.5

Two Perceptron Layers Can Do XOR

0
A+1-1/2=-1/2

1 1
1+1-3/2=0.5 1+1-1/2=1.5

Two Perceptron Layers Can Do XOR

1
0+1-1/2=1/2

0 1
0+1-3/2=-0.5 0+1-1/2=0.5

Two Perceptron Layers Can Do XOR

1
0+1-1/2=1/2

0 1
1+0-3/2=-0.5 1+0-1/2=0.5

The Multilayer Perceptron and Backpropagation

Multilayer Perceptron

* Signal flows one
direction

) Output layer

e Thisis a
feedforward neural
network (FNN) ~

\

:l Hidden layer

* |If there's a deep
stack of hidden
layers, it's a deep
neural network

Backpropagation

 In 1970, reverse-mode automatic differentiation or reverse-
mode autodiff was developed

e Can calculate the gradient of the error for all parameters
* |In two passes through the network
* One forward, one backward

 Makes gradient descent much easier to calculate

 The combination of reverse-mode autodiff and gradient descent
Is called backpropagation or backprop

Backpropagation Steps

* Initialize all weights randomly
e Use a mini-batch, such as 32 instances

* Run the batch through the network to the end, keeping all
calculated values

e Measure the network error

 Compute how much each weight and bias contributed to the
error analytically with the chain rule

* Perform a gradient descent step in the direction to best lower the
error

Activation Functions

 Must use a function with a gradient, not a step function, like:
a(z) =1/ (1 + exp(-2))
tanh(z) = 20(2z) - 1

* Sigmoid
* Hyperbolic tangent

Activation functions

7
/S
7/
/
________ L / - Heaviside
/ —+= RelU
_ -== Sigmoid
— Tanh

1 0 1 2 3

* Rectified linear unit function ReLU(z) = max(0, z)

 Fast to compute
* The default

Derivatives

- o .
—
-

L.
-~ -
— S — —

Regression MLPs

Predicting a

Single Value |

+ O tput

nenuerc?rtI - %) Output layer
e‘ % lHldden layer

P‘\

X,) Input layer

\

Predicting a
2-D Value

* Two output
neurons

* EX: specify X and
Y coordinates of
the center of an
object in a image

Activation Functions

* QOutput neuron's activation function
* For varying value, leave its output unchanged

* Jo guarantee positive value, use

e RelLU, or
e softplus softplus(z) = log(1 + exp(2))
e Smooth variant of ReLU

* Jo restrict range, use sigmoid or tanh

Error Measurement

e Usually, mean squared error
* |f you have a lot of outliers, use
 Absolute error, or

* Huber loss, which combines both

Typical Regression MLP Architecture

Hyperparameter Typical value

hidden layers Depends on the problem, but typically 1to 5

neurons per hidden layer Depends on the problem, but typically 10 to 100

output neurons 1 per prediction dimension
Hidden activation RelLU
Output activation None, or ReLU/softplus (if positive outputs) or sigmoid/tanh (if bounded outputs)

Loss function MSE, or Huber if outliers

Classification MLPs

Binary
Classification

* One output

neuron %) Output layer

* Sigmoid
activation
function

R £
* QOutput between
v

0 and 1

* Probability of
positive class

% 1 Hidden layer

P‘\

X,) Input layer

\

Multilabel
Classification

 EX: label emall
spam and
urgent

* Two output
neurons

e Using sigmoid
activation
function

* Qutputs are
probabilities of
each positive
class

Multilabel
Classification

* If only one class
per instance is
allowed, use
softmax
activation
function for the
whole output
layer

 Makes total
probability one

Softmax

e Assigns a probabillity to each class

* The total of them is always 1

e K is the number of classes.
« s(x) is a vector containing the scores of each class for the instance x.

» o(s(x))k is the estimated probability that the instance x belongs to class k, given the scores of each

class for that instance.

Typical Classification MLP

Architecture

Hyperparameter

hidden layers

output neurons

Output layer activation

Loss function

Binary classification Multilabel binary classification

Typically 1 to 5 layers, depending on the task

1 1 per binary label

Sigmoid Sigmoid

X-entropy X-entropy

Multiclass classification

1 per class

Softmax

X-entropy

Cross Entropy

 Cost function for multilabel classification

 |f predictions are correct, that is near 1 for correct predictions,
the cross entropy is near O

* Erroneous predictions make the cross entropy larger

Equation 4-22. Cross entropy cost function
m K (7 ~ (1
J(®) = _n% D iz Dkt yk?) log (pgl))
: : (@) - .
In this equation, Y% is the target probability that the ith instance

belongs to class k. In general, it is either equal to 1 or 0, depending on

whether the instance belongs to the class or not.

Implementing MLPs with Keras

ML 101: Computer Vision

* Fashion MNIST

28x28 grayscale images of clothing

Ankle boot T-shirt/top T-shirt/top

4 7

T-shirt/top Ankle boot

L

Dress Trouser
Sandal Dress

=1

-

Sandal

Dress

)
AN

Sandal

T-shirt/top

T-shirt/top

Sneaker

Pullover

Ankle boot

Sneaker

Pullover

Sandal

“.J!

T-shirt/to

T

Trouser

dal

Pullover

Pullover

Shirt

Coat

Trouser

Sandal

Loading the Dataset

import tensorflow as tf

fashion_mnist = tf.keras.datasets.fashion _mnist.load data()
(X_train_full, y train_full), (X test, y test) = fashion_mnist
X_train, y train = X_train_full[:-5000], y train_full[:-5000]
X _valid, y valid = X_train_full[-5000:], y train_full[-5000:]

X_train, X valid, X test = X _train / 255., X valid / 255., X test / 255.

e |Load images
 Set aside a validation set

* Divide by 255 to normalize the brightness values

Creating the Model

* Sequential makes the usual model, with a single stack of layers

* Flatten converts the 28x28 array to a one-dimensional list of 784
values

 Dense makes the hidden layers, with the RelLU activation
function

* The final Dense makes the output neurons, with softmax to
make all the probabilities total to 1

model = tf.keras.Sequential([
tf.keras.layers.Flatten(input _shape=[28, 28]),
tf.keras.layers.Dense(300, activation="relu"),
tf.keras.layers.Dense(100, activation="relu"),
tf.keras.layers.Dense(10, activation="softmax")

D

>>> model.summary()
Model: "sequential"

Layer (type) Output Shape Param #
flatten (Flatten) (None, 784) 0
dense (Dense) (None, 300) 235500
dense_1 (Dense) (None, 100) 30100
dense_2 (Dense) (None, 10) 1010

Total params: 266,610
Trainable params: 266,610
Non-trainable params: 0

Compiling the Model

 Crossentropy is the appropriate error measure for a task where
the model must assign only one of many labels

* sgd is Stochastic Gradient Descent (with backpropagation)

* You usually want to specify learning_rate; here we accept the
default of 0.01

 metrics=["accuracy"] measures accuracy during training and
evaluation

model.compile(loss="sparse categorical crossentropy"”,
optimizer="sqd",
metrics=["accuracy"])

Training with fit()

>>> history = model.fit(X_ train, y train, epochs=30,
validation data=(X_valid, y valid))

Epoch 1/30
1719/1719 [::::::::::::::::::::::::::::::] - 25 989US/Step

- loss: 0.7220 - sparse_categorical_accuracy: 0.7649
- val_loss: 0.4959 - val sparse categorical accuracy: 0.8332

e 1719 is the number of mini-batches

e accuracy on training set and validation set are shown

Training with fit()

Epoch 30/30
1719/1719 [==============================] - 2s 963us/step
- loss: 0.2235 - sparse_categorical_accuracy: 0.9200
- val_loss: 0.3056 - val sparse categorical accuracy: 0.8894

* More accurate on training set than validation set

* A small amount of overfitting

Learning Curves

1.0
—— - — P ———— R . e
08 “ //
¥
!
\
\
\
061"
\
\
\\
0.4 - - e
~~~~~~~ ‘A\, — */\/\ —
e —
eeee Joss 00 TTTTTmeeeleeaallll]
0>l =-=- sparse_categorical_accuracy @ TTTTTTeees
—— val_loss
—~— val_sparse_categorical_accuracy
0.0 I I t | 1
0 5 10 15 20 25

Epoch



Improving Performance

* Tune the hyperparameters
* First, adjust learning_rate

* Then try changing number of layers, neurons per layer, and
activation functions



Wide & Deep Neural Network

* Introduced in 2016 f
{ Output layer }

* |nputs connect directly to outputs

e [t can learn both

* deep patterns (through all the
layers), and

* simple rules (through the short
path)

?

[ Input layer




Creating Layers

normalization_layer = tf.keras.layers.Normalization()
hidden_layerl = tf.keras.layers.Dense(30, activation="relu")
hidden layer2 = tf.keras.layers.Dense(30, activation="relu")
concat _layer = tf.keras.layers.Concatenate()

output_layer = tf.keras.layers.Dense(1)

* normalization layer standardizes inputs
* hidden layers operate as usual
 concatenate layer combines all the inputs into one tensor

* output layer operates as usual



Putting the Layers in Order

 concat combines the normalized input and the deep learning
output

e model creates the model

input_ = tf.keras.layers.Input(shape=X_train.shape[1:])
normalized = normalization_layer(input_ )

hiddenl = hidden layeri(normalized)

hidden2 = hidden layer2(hidden1)

concat = concat_layer([normalized, hidden2])

output = output layer(concat)

model = tf.keras.Model(inputs=[input_], outputs=[output])




Handling Multiple Inputs

 Some inputs go wide, others go deep

input_wide = tf.keras.layers.Input(shape=[5]) # features 0 to 4
input_deep = tf.keras.layers.Input(shape=[6]) # features 2 to 7
norm_layer_wide = tf.keras.layers.Normalization()
norm_layer_deep = tf.keras.layers.Normalization()

norm_wide = norm_layer_wide(input_wide)
norm_layer_deep(input_deep)

norm_deep
hiddenl = tf.keras.layers.Dense(30, activation="relu")(norm_deep)

hidden2 = tf.keras.layers.Dense(30, activation="relu")(hidden1)

concat = tf.keras.layers.concatenate([norm_wide, hidden2])

output = tf.keras.layers.Dense(1)(concat)

model = tf.keras.Model(inputs=[input_wide, input_deep], outputs=[output])

?

[ Output layer ]

o
?

Hidden 2
Hidden 1

f

[ Normalization } [NormalizationJ

f f

[ Input wide J [ Input deep ]




* The task may demand it, such as
locating and classifying the main
object in a picture

e This is both regression and
classification

* You may have multiple

iIndependent tasks on the same
data

e One network is often better than
several, because it can learn
features that are useful across
tasks

When to Use Multiple Outputs

t t

[ Output layer ] [Auxiliaryoutput]

[ J
?

idden 2

*

Hidden 1

f

Normalization

?

Input deep

[ Normalization }

f

[ Input wide }

e N e T cun T SRR
— ) J




When to Use Multiple Outputs

e For regularization f f
[ Output layer ] [Auxiliaryoutput]

* The auxiliary output can ensure
that the underlying part of the [ f ] T

network learns something
useful on its own

|d en 2

( Normalization }

f

[ Input wide )

Normallzatlon

Inputdeep

[
o
[
[

— N N




Multiple Outputs

 Each output needs its own loss function

 The data needs labels for each output



Dynamic Models

e Keras can be used to make models without a fixed structure

* Including for loops, If statement, etc.



Using TensorBoard for Visualization

« Can view
learning
curves,
statistics,
find speed
bottlenecks,
and more

(] Show data download links
Ignore outliers in chart scaling

Toolip sorting default -

method:

Semoathing
————ll 0.6

Horizontsl Axis
RELATIVE WAL

Runs

o~ en 202208 011725 5/
Bo"

2002 08 0V N 2w
O :J‘LN&L Y e

TOGGLE ALL BUNS

Q, Filter tags (regular expressions supported)

\
\
\
\

\ﬂ——{ Smoothed learning curve

Raw learning curves

Refreshdata |

\\ e — C ——

—_—




Fine-Tuning Neural Network Hyperparameters



Hyperparameters

* A basic MLP has:
 Number of layers
* Number of neurons
* Activation functions
* Weight initialization logic
e Optimizer
 Learning rate
* Batch size

e etc.



Tuning Strategies

* Scikit-learn offers grid search and randomized search options
 Keras Tuner integrates with TensorBoard

* Optimizes hyperparameters using SGD or Adam (like SGD but
varies the learning rate)



Number of Hidden Layers

A MLP with one hidden layer can theoretically model anything

e But for complex problems, deep models have a higher
parameter efficiency

* Models with fewer neurons

 Because, like human brains, one layer finds low-level
components like edges

* Higher levels look at larger-scale features

* Highest level finds whole meaningful shapes, like faces



Transfer learning

* A new model can start from pre-trained lower levels

* Image classification and speech recognition models typically use
dozens or hundreds of layers

e But rarely are trained from scratch

* You reuse parts of a pre-trained network that performs a
similar task



Number of Neurons per Hidden Layer

Input and output layers are set by the problem
 MNIST has 28 x 28 inputs and 10 outputs
Old way: hidden layers in a pyramid shape
 More neurons at the lower layers

* For MNIST, 300, 200, 100

But using the same number of neurons in each layer seems to
work better, and is now the standard

One way to select numbers:

 Gradually increase the # of neurons per payer and the # of
layers until you get overfitting



Stretch Pants

e Start with more layers and neurons than you need

e Use early stopping and other regularization to prevent excessive
overfitting

* This avoids the problem of "bottleneck" layers
 Too weak to represent the data

e Information is lost and cannot be recovered



Learning Rate

 The most important hyperparameter
* Optimal learning rate is half the maximum learning rate
* Above that, the model diverges

* One way: train the model for a few iterations at a very low
learning rate like 10-°

e (GGradually increase the rate to a large value like 10

* Find the value where loss starts to rise dramatically

e Use arate 1/10 of that rate



Other Parameters

* Optimizer -- discussed in later chapters

 Batch size -- unclear, some people prefer large batches like
8,192 to fill GPU RAM, others prefer batches less than 32

* Activation function -- RelLLU is good for hidden layers

* Number of iterations -- Just use early stopping instead






