
Machine Learning
Security

10 Introduction to
Artificial Neural Networks
with Keras

Made Oct 21, 2023

• Inspired by our brains

• ANNs are at the very core of deep learning

• Versatile, powerful, and scalable; used by

• Google Images

• Apple's Siri

• YouTube

Artificial Neural Networks (ANNs)

• From Biological to Artificial Neurons

• Biological Neurons

• Logical Computations with Neurons

• The Perceptron

• The Multilayer Perceptron and Backpropagation

• Regression MLPs

• Classification MLPs

• Implementing MLPs with Keras

• Fine-Tuning Neural Network Hyperparameters

Topics

From Biological to Artificial Neurons

• Introduced in 1943 for propositional logic

• Long winter for ANNs

• In 1990s, other ML systems were developed, such as support
vector machines

• Now there's a new wave of interest in ANNs

History of ANNs

• Huge quantity of data now available

• ANNs often outperform on very large and complex problems

• Training algorithms have improved

• Theoretical problems like local minima turned out to be benign in
practice

• Local optima often almost as good as the global optimum

• ANNs have entered a virtuous cycle of funding and progress

The Case for ANNs

Biological Neurons

• dendrites are the branching extensions

• axon carries the output signal far away

Biological Neurons

• Short electric pulses called action potentials travel along the
axons and release neurotransmitters at the synapses

• When a neuron receives enough neurotransmitters, it fires

Biological Neurons

• Each neuron is simple

• Computations are done by the network of many neurons working
together

• This is a sample of human cortex

Biological Neural Networks

Logical Computations with Neurons

• Simple On/Off neurons act like logic gates

Logical Computations with Neurons

The Perceptron

• Developed in 1957

• Neurons are

• Threshold Logic Units (TLUs) or

• Linear Threshold Units (LTUs)

• Computes a linear function of inputs

• Applies a step function to the result

The Perceptron

• One TLU can perform
binary classification

• Input data like petal
width and height

• Output sorts inputs into
two categories

• Training will determine
the correct weights w
and bias b

TLU (Threshold Logic Unit)

• A layer of TLUs

• Every TLU is
connected to every
input

• fully connected
layer or

• dense layer

• Inputs are called
the input layer

• TLUs are the
output layer

Perceptron

• This perceptron
can classify
instances into
three classes

Perceptron

• Hebb's rule or Hebbian Learning

• When a neuron triggers another neuron often

• The connection between them gets stronger

• "Cells that fire together, wire together"

• Perceptrons use the error of a prediction also

• Reinforces connections that reduce error

Training a Perceptron

• Resembles stochastic gradient descent

Training a Perceptron

• Calculation is linear in all inputs

• Cannot compute XOR

Limitations of a Perceptron

x1 = 0 x1 = 1
x2 = 0 0 1
x2 = 1 1 0

• Inputs at bottom

• All weights 1; Bias: -3/2 and -1/2

• Each neuron outputs with a step
function

• If > 0, output 1

• If <= 0, output 0

Two Perceptron Layers Can Do XOR

0

 0 + 0 - 1/2 = -1/2

0 0

 0 + 0 - 3/2 = -1.5 0 + 0 - 1/2 = -0.5

0 0

Two Perceptron Layers Can Do XOR

0

 -1 + 1 - 1/2 = -1/2

1 1

 1 + 1 - 3/2 = 0.5 1 + 1 - 1/2 = 1.5

1 1

Two Perceptron Layers Can Do XOR

1

 0 + 1 - 1/2 = 1/2

0 1

 0 + 1 - 3/2 = -0.5 0 + 1 - 1/2 = 0.5

0 1

Two Perceptron Layers Can Do XOR

1

 0 + 1 - 1/2 = 1/2

0 1

 1 + 0 - 3/2 = -0.5 1 + 0 - 1/2 = 0.5

1 0

Two Perceptron Layers Can Do XOR

Ch 10a

The Multilayer Perceptron and Backpropagation

• Signal flows one
direction

• This is a
feedforward neural
network (FNN)

• If there's a deep
stack of hidden
layers, it's a deep
neural network

Multilayer Perceptron

• In 1970, reverse-mode automatic differentiation or reverse-
mode autodiff was developed

• Can calculate the gradient of the error for all parameters

• In two passes through the network

• One forward, one backward

• Makes gradient descent much easier to calculate

• The combination of reverse-mode autodiff and gradient descent
is called backpropagation or backprop

Backpropagation

• Initialize all weights randomly

• Use a mini-batch, such as 32 instances

• Run the batch through the network to the end, keeping all
calculated values

• Measure the network error

• Compute how much each weight and bias contributed to the
error analytically with the chain rule

• Perform a gradient descent step in the direction to best lower the
error

Backpropagation Steps

• Must use a function with a gradient, not a step function, like:

• Sigmoid

• Hyperbolic tangent

• Rectified linear unit function

• Fast to compute

• The default

Activation Functions

Regression MLPs

• One output
neuron

Predicting a
Single Value

• Two output
neurons

• Ex: specify X and
Y coordinates of
the center of an
object in a image

Predicting a
2-D Value

• Output neuron's activation function

• For varying value, leave its output unchanged

• To guarantee positive value, use

• ReLU, or

• softplus

• Smooth variant of ReLU

• To restrict range, use sigmoid or tanh

Activation Functions

• Usually, mean squared error

• If you have a lot of outliers, use

• Absolute error, or

• Huber loss, which combines both

Error Measurement

Typical Regression MLP Architecture

Classification MLPs

• One output
neuron

• Sigmoid
activation
function

• Output between
0 and 1

• Probability of
positive class

Binary
Classification

• Ex: label email
spam and
urgent

• Two output
neurons

• Using sigmoid
activation
function

• Outputs are
probabilities of
each positive
class

Multilabel
Classification

• If only one class
per instance is
allowed, use
softmax
activation
function for the
whole output
layer

• Makes total
probability one

Multilabel
Classification

• Assigns a probability to each class

• The total of them is always 1

Softmax

Typical Classification MLP
Architecture

• Cost function for multilabel classification

• If predictions are correct, that is near 1 for correct predictions,
the cross entropy is near 0

• Erroneous predictions make the cross entropy larger

Cross Entropy

Ch 10b

Implementing MLPs with Keras

• Fashion MNIST

• 28x28 grayscale images of clothing

ML 101: Computer Vision

• Load images

• Set aside a validation set

• Divide by 255 to normalize the brightness values

Loading the Dataset

• Sequential makes the usual model, with a single stack of layers

• Flatten converts the 28x28 array to a one-dimensional list of 784
values

• Dense makes the hidden layers, with the ReLU activation
function

• The final Dense makes the output neurons, with softmax to
make all the probabilities total to 1

Creating the Model

• Crossentropy is the appropriate error measure for a task where
the model must assign only one of many labels

• sgd is Stochastic Gradient Descent (with backpropagation)

• You usually want to specify learning_rate; here we accept the
default of 0.01

• metrics=["accuracy"] measures accuracy during training and
evaluation

Compiling the Model

Training with fit()

• 1719 is the number of mini-batches

• accuracy on training set and validation set are shown

Training with fit()

• More accurate on training set than validation set

• A small amount of overfitting

Learning Curves

• Tune the hyperparameters

• First, adjust learning_rate

• Then try changing number of layers, neurons per layer, and
activation functions

Improving Performance

• Introduced in 2016

• Inputs connect directly to outputs

• It can learn both

• deep patterns (through all the
layers), and

• simple rules (through the short
path)

Wide & Deep Neural Network

• normalization layer standardizes inputs

• hidden layers operate as usual

• concatenate layer combines all the inputs into one tensor

• output layer operates as usual

Creating Layers

• concat combines the normalized input and the deep learning
output

• model creates the model

Putting the Layers in Order

• Some inputs go wide, others go deep

Handling Multiple Inputs

• The task may demand it, such as
locating and classifying the main
object in a picture

• This is both regression and
classification

• You may have multiple
independent tasks on the same
data

• One network is often better than
several, because it can learn
features that are useful across
tasks

When to Use Multiple Outputs

• For regularization

• The auxiliary output can ensure
that the underlying part of the
network learns something
useful on its own

When to Use Multiple Outputs

• Each output needs its own loss function

• The data needs labels for each output

Multiple Outputs

• Keras can be used to make models without a fixed structure

• Including for loops, if statement, etc.

Dynamic Models

• Can view
learning
curves,
statistics,
find speed
bottlenecks,
and more

Using TensorBoard for Visualization

Fine-Tuning Neural Network Hyperparameters

• A basic MLP has:

• Number of layers

• Number of neurons

• Activation functions

• Weight initialization logic

• Optimizer

• Learning rate

• Batch size

• etc.

Hyperparameters

• Scikit-learn offers grid search and randomized search options

• Keras Tuner integrates with TensorBoard

• Optimizes hyperparameters using SGD or Adam (like SGD but
varies the learning rate)

Tuning Strategies

• A MLP with one hidden layer can theoretically model anything

• But for complex problems, deep models have a higher
parameter efficiency

• Models with fewer neurons

• Because, like human brains, one layer finds low-level
components like edges

• Higher levels look at larger-scale features

• Highest level finds whole meaningful shapes, like faces

Number of Hidden Layers

• A new model can start from pre-trained lower levels

• Image classification and speech recognition models typically use
dozens or hundreds of layers

• But rarely are trained from scratch

• You reuse parts of a pre-trained network that performs a
similar task

Transfer learning

• Input and output layers are set by the problem

• MNIST has 28 x 28 inputs and 10 outputs

• Old way: hidden layers in a pyramid shape

• More neurons at the lower layers

• For MNIST, 300, 200, 100

• But using the same number of neurons in each layer seems to
work better, and is now the standard

• One way to select numbers:

• Gradually increase the # of neurons per payer and the # of
layers until you get overfitting

Number of Neurons per Hidden Layer

• Start with more layers and neurons than you need

• Use early stopping and other regularization to prevent excessive
overfitting

• This avoids the problem of "bottleneck" layers

• Too weak to represent the data

• Information is lost and cannot be recovered

Stretch Pants

• The most important hyperparameter

• Optimal learning rate is half the maximum learning rate

• Above that, the model diverges

• One way: train the model for a few iterations at a very low
learning rate like 10-5

• Gradually increase the rate to a large value like 10

• Find the value where loss starts to rise dramatically

• Use a rate 1/10 of that rate

Learning Rate

• Optimizer -- discussed in later chapters

• Batch size -- unclear, some people prefer large batches like
8,192 to fill GPU RAM, others prefer batches less than 32

• Activation function -- ReLU is good for hidden layers

• Number of iterations -- Just use early stopping instead

Other Parameters

Ch 10c

