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Artificial Neural Networks (ANNs)

* Inspired by our brains
 ANNSs are at the very core of deep learning
* Versatile, powerful, and scalable; used by
 Google Images
* Apple's Siri
* Youlube



Topics

- From Biological to Artificial Neurons

- Biological Neurons

- Logical Computations with Neurons

* The Perceptron

- The Multilayer Perceptron and Backpropagation
- Regression MLPs

- Classification MLPs

- Implementing MLPs with Keras

* Fine-Tuning Neural Network Hyperparameters



From Biological to Artificial Neurons



History of ANNs

* Introduced in 1943 for propositional logic
* Long winter for ANNs

* |In 1990s, other ML systems were developed, such as support
vector machines

e Now there's a new wave of interest in ANNs



The Case for ANNs

 Huge quantity of data now available
 ANNSs often outperform on very large and complex problems
* TJraining algorithms have improved

* Theoretical problems like local minima turned out to be benign In
practice

* Local optima often almost as good as the global optimum

 ANNSs have entered a virtuous cycle of funding and progress



Biological Neurons



Biological Neurons

* dendrites are the branching extensions

e axon carries the output signal far away
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Biological Neurons

e Short electric pulses called action potentials travel along the
axons and release neurotransmitters at the synapses

* When a neuron receives enough neurotransmitters, it fires
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Biological Neural Networks

e Each neuron is simple

e Computations are done by the network of many neurons working
together

e This is a sample of human cortex
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Logical Computations with Neurons



Logical Computations with Neurons

« Simple On/Off neurons act like logic gates
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The Perceptron



The Perceptron

 Developed in 1957
* Neurons are
 Threshold Logic Units (TLUs) or
* Linear Threshold Units (LTUs)
 Computes a linear function of inputs

Z=wixi1+w2x2+---+wnxn+b=wrx+b>b

* Applies a step function to the result
hw(x) = step(z)



TLU (Threshold Logic Unit)

 One TLU can perform

Output: h.,, .(x)=step(w ' x+
binary classification P (x)=step( )

Step function: step(z)

Linear function: z=w'x+

* |nput data like petal
width and height

e QOutput sorts inputs into
two categories

e Training will determine
the correct weights w
and bias b X X5 X3 Inputs



Perceptron

 Alayer of TLUs Outputs

* Every TLU is
connected to every

iInput )
1 Qutput layer

 fully connected
layer or

e dense layer

* Inputs are called

; \
the input layer X X yInput layer

e TLUs are the Inputs /
output layer



Perceptron

* This perceptron
can classify
Instances into
three classes

Outputs




Training a Perceptron

 Hebb's rule or Hebbian Learning
 When a neuron triggers another neuron often
* The connection between them gets stronger
e "Cells that fire together, wire together”

* Perceptrons use the error of a prediction also

* Reinforces connections that reduce error



Training a Perceptron
 Resembles stochastic gradient descent

A

(next step) __ W;.; +n (y] _ y]) T

wi,j
In this equation:
e wi, j is the connection weight between the ith input and the jth neuron.
e xi is the ith input value of the current training instance.
. Yi is the output of the jth output neuron for the current training instance.
o yjis the target output of the jth output neuron for the current training instance.

e n is the learning rate (see Chapter 4).




Limitations of a Perceptron

» Calculation is linear in all inputs

 Cannot compute XOR
7X1 =0x1=1

x2=0
x2=1

0 1
1 0




Two Perceptron Layers Can Do XOR

* |nputs at bottom
* All weights 1; Bias: -3/2 and -1/2

 Each neuron outputs with a step
function

e |f >0, output 1
* |[f <=0, output O




Two Perceptron Layers Can Do XOR

0
0+0-1/2=-1/2

0 0
0+0-3/2=-1.5 0+0-1/2=-0.5




Two Perceptron Layers Can Do XOR

0
A+1-1/2=-1/2

1 1
1+1-3/2=0.5 1+1-1/2=1.5




Two Perceptron Layers Can Do XOR

1
0+1-1/2=1/2

0 1
0+1-3/2=-0.5 0+1-1/2=0.5




Two Perceptron Layers Can Do XOR

1
0+1-1/2=1/2

0 1
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The Multilayer Perceptron and Backpropagation



Multilayer Perceptron

* Signal flows one
direction

) Output layer

e Thisis a
feedforward neural
network (FNN) ~

\

:l Hidden layer

* |If there's a deep
stack of hidden
layers, it's a deep
neural network




Backpropagation

 In 1970, reverse-mode automatic differentiation or reverse-
mode autodiff was developed

e Can calculate the gradient of the error for all parameters
* |In two passes through the network
* One forward, one backward

 Makes gradient descent much easier to calculate

 The combination of reverse-mode autodiff and gradient descent
Is called backpropagation or backprop



Backpropagation Steps

* Initialize all weights randomly
e Use a mini-batch, such as 32 instances

* Run the batch through the network to the end, keeping all
calculated values

e Measure the network error

 Compute how much each weight and bias contributed to the
error analytically with the chain rule

* Perform a gradient descent step in the direction to best lower the
error



Activation Functions

 Must use a function with a gradient, not a step function, like:
a(z) =1/ (1 + exp(-2))
tanh(z) = 20(2z) - 1

* Sigmoid
* Hyperbolic tangent

Activation functions
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* Rectified linear unit function ReLU(z) = max(0, z)

 Fast to compute
* The default
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Regression MLPs



Predicting a

Single Value |

+ O tput
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Predicting a
2-D Value

* Two output
neurons

* EX: specify X and
Y coordinates of
the center of an
object in a image




Activation Functions

* QOutput neuron's activation function
* For varying value, leave its output unchanged

* Jo guarantee positive value, use

e RelLU, or
e softplus softplus(z) = log(1 + exp(2))
e Smooth variant of ReLU

* Jo restrict range, use sigmoid or tanh



Error Measurement

e Usually, mean squared error
* |f you have a lot of outliers, use
 Absolute error, or

* Huber loss, which combines both



Typical Regression MLP Architecture

Hyperparameter Typical value

# hidden layers Depends on the problem, but typically 1to 5

# neurons per hidden layer  Depends on the problem, but typically 10 to 100

# output neurons 1 per prediction dimension
Hidden activation RelLU
Output activation None, or ReLU/softplus (if positive outputs) or sigmoid/tanh (if bounded outputs)

Loss function MSE, or Huber if outliers



Classification MLPs



Binary
Classification

* One output

neuron % ) Output layer

* Sigmoid
activation
function

R £
* QOutput between
v

0 and 1

* Probability of
positive class

% 1 Hidden layer

P‘\

X, ) Input layer

\




Multilabel
Classification

 EX: label emall
spam and
urgent

* Two output
neurons

e Using sigmoid
activation
function

* Qutputs are
probabilities of
each positive
class




Multilabel
Classification

* If only one class
per instance is
allowed, use
softmax
activation
function for the
whole output
layer

 Makes total
probability one




Softmax

e Assigns a probabillity to each class

* The total of them is always 1

e K is the number of classes.
« s(x) is a vector containing the scores of each class for the instance x.

» o(s(x))k is the estimated probability that the instance x belongs to class k, given the scores of each

class for that instance.



Typical Classification MLP

Architecture

Hyperparameter

# hidden layers

# output neurons

Output layer activation

Loss function

Binary classification Multilabel binary classification

Typically 1 to 5 layers, depending on the task

1 1 per binary label

Sigmoid Sigmoid

X-entropy X-entropy

Multiclass classification

1 per class

Softmax

X-entropy



Cross Entropy

 Cost function for multilabel classification

 |f predictions are correct, that is near 1 for correct predictions,
the cross entropy is near O

* Erroneous predictions make the cross entropy larger

Equation 4-22. Cross entropy cost function
m K (7 ~ (1
J(®) = _n% D iz Dkt yk?) log (pgl))
: : (@) - .
In this equation, Y% is the target probability that the ith instance

belongs to class k. In general, it is either equal to 1 or 0, depending on

whether the instance belongs to the class or not.






Implementing MLPs with Keras



ML 101: Computer Vision

* Fashion MNIST

28x28 grayscale images of clothing
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Loading the Dataset

import tensorflow as tf

fashion_mnist = tf.keras.datasets.fashion _mnist.load data()
(X_train_full, y train_full), (X test, y test) = fashion_mnist
X_train, y train = X_train_full[:-5000], y train_full[:-5000]
X _valid, y valid = X_train_full[-5000:], y train_full[-5000:]

X_train, X valid, X test = X _train / 255., X valid / 255., X test / 255.

e |Load images
 Set aside a validation set

* Divide by 255 to normalize the brightness values




Creating the Model

* Sequential makes the usual model, with a single stack of layers

* Flatten converts the 28x28 array to a one-dimensional list of 784
values

 Dense makes the hidden layers, with the RelLU activation
function

* The final Dense makes the output neurons, with softmax to
make all the probabilities total to 1

model = tf.keras.Sequential([
tf.keras.layers.Flatten(input _shape=[28, 28]),
tf.keras.layers.Dense(300, activation="relu"),
tf.keras.layers.Dense(100, activation="relu"),
tf.keras.layers.Dense(10, activation="softmax")

D







>>> model.summary()
Model: "sequential"

Layer (type) Output Shape Param #
flatten (Flatten)  (None, 784) 0
dense (Dense) (None, 300) 235500
dense_1 (Dense) (None, 100) 30100
dense_2 (Dense) (None, 10) 1010

Total params: 266,610
Trainable params: 266,610
Non-trainable params: 0




Compiling the Model

 Crossentropy is the appropriate error measure for a task where
the model must assign only one of many labels

* sgd is Stochastic Gradient Descent (with backpropagation)

* You usually want to specify learning_rate; here we accept the
default of 0.01

 metrics=["accuracy"] measures accuracy during training and
evaluation

model.compile(loss="sparse categorical crossentropy"”,
optimizer="sqd",
metrics=["accuracy"])




Training with fit()

>>> history = model.fit(X_ train, y train, epochs=30,
validation data=(X_valid, y valid))

Epoch 1/30
1719/1719 [::::::::::::::::::::::::::::::] - 25 989US/Step

- loss: 0.7220 - sparse_categorical_accuracy: 0.7649
- val_loss: 0.4959 - val sparse categorical accuracy: 0.8332

e 1719 is the number of mini-batches

e accuracy on training set and validation set are shown



Training with fit()

Epoch 30/30
1719/1719 [==============================] - 2s 963us/step
- loss: 0.2235 - sparse_categorical_accuracy: 0.9200
- val_loss: 0.3056 - val sparse categorical accuracy: 0.8894

* More accurate on training set than validation set

* A small amount of overfitting



Learning Curves
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Improving Performance

* Tune the hyperparameters
* First, adjust learning_rate

* Then try changing number of layers, neurons per layer, and
activation functions



Wide & Deep Neural Network

* Introduced in 2016 f
{ Output layer }

* |nputs connect directly to outputs

e [t can learn both

* deep patterns (through all the
layers), and

* simple rules (through the short
path)

?

[ Input layer




Creating Layers

normalization_layer = tf.keras.layers.Normalization()
hidden_layerl = tf.keras.layers.Dense(30, activation="relu")
hidden layer2 = tf.keras.layers.Dense(30, activation="relu")
concat _layer = tf.keras.layers.Concatenate()

output_layer = tf.keras.layers.Dense(1)

* normalization layer standardizes inputs
* hidden layers operate as usual
 concatenate layer combines all the inputs into one tensor

* output layer operates as usual



Putting the Layers in Order

 concat combines the normalized input and the deep learning
output

e model creates the model

input_ = tf.keras.layers.Input(shape=X_train.shape[1:])
normalized = normalization_layer(input_ )

hiddenl = hidden layeri(normalized)

hidden2 = hidden layer2(hidden1)

concat = concat_layer([normalized, hidden2])

output = output layer(concat)

model = tf.keras.Model(inputs=[input_], outputs=[output])




Handling Multiple Inputs

 Some inputs go wide, others go deep

input_wide = tf.keras.layers.Input(shape=[5]) # features 0 to 4
input_deep = tf.keras.layers.Input(shape=[6]) # features 2 to 7
norm_layer_wide = tf.keras.layers.Normalization()
norm_layer_deep = tf.keras.layers.Normalization()

norm_wide = norm_layer_wide(input_wide)
norm_layer_deep(input_deep)

norm_deep
hiddenl = tf.keras.layers.Dense(30, activation="relu")(norm_deep)

hidden2 = tf.keras.layers.Dense(30, activation="relu")(hidden1)

concat = tf.keras.layers.concatenate([norm_wide, hidden2])

output = tf.keras.layers.Dense(1)(concat)

model = tf.keras.Model(inputs=[input_wide, input_deep], outputs=[output])
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* The task may demand it, such as
locating and classifying the main
object in a picture

e This is both regression and
classification

* You may have multiple

iIndependent tasks on the same
data

e One network is often better than
several, because it can learn
features that are useful across
tasks

When to Use Multiple Outputs
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When to Use Multiple Outputs

e For regularization f f
[ Output layer ] [Auxiliaryoutput]

* The auxiliary output can ensure
that the underlying part of the [ f ] T

network learns something
useful on its own
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Multiple Outputs

 Each output needs its own loss function

 The data needs labels for each output



Dynamic Models

e Keras can be used to make models without a fixed structure

* Including for loops, If statement, etc.



Using TensorBoard for Visualization

« Can view
learning
curves,
statistics,
find speed
bottlenecks,
and more
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Fine-Tuning Neural Network Hyperparameters



Hyperparameters

* A basic MLP has:
 Number of layers
* Number of neurons
* Activation functions
* Weight initialization logic
e Optimizer
 Learning rate
* Batch size

e etc.



Tuning Strategies

* Scikit-learn offers grid search and randomized search options
 Keras Tuner integrates with TensorBoard

* Optimizes hyperparameters using SGD or Adam (like SGD but
varies the learning rate)



Number of Hidden Layers

A MLP with one hidden layer can theoretically model anything

e But for complex problems, deep models have a higher
parameter efficiency

* Models with fewer neurons

 Because, like human brains, one layer finds low-level
components like edges

* Higher levels look at larger-scale features

* Highest level finds whole meaningful shapes, like faces



Transfer learning

* A new model can start from pre-trained lower levels

* Image classification and speech recognition models typically use
dozens or hundreds of layers

e But rarely are trained from scratch

* You reuse parts of a pre-trained network that performs a
similar task



Number of Neurons per Hidden Layer

Input and output layers are set by the problem
 MNIST has 28 x 28 inputs and 10 outputs
Old way: hidden layers in a pyramid shape
 More neurons at the lower layers

* For MNIST, 300, 200, 100

But using the same number of neurons in each layer seems to
work better, and is now the standard

One way to select numbers:

 Gradually increase the # of neurons per payer and the # of
layers until you get overfitting



Stretch Pants

e Start with more layers and neurons than you need

e Use early stopping and other regularization to prevent excessive
overfitting

* This avoids the problem of "bottleneck" layers
 Too weak to represent the data

e Information is lost and cannot be recovered



Learning Rate

 The most important hyperparameter
* Optimal learning rate is half the maximum learning rate
* Above that, the model diverges

* One way: train the model for a few iterations at a very low
learning rate like 10-°

e (GGradually increase the rate to a large value like 10

* Find the value where loss starts to rise dramatically

e Use arate 1/10 of that rate



Other Parameters

* Optimizer -- discussed in later chapters

 Batch size -- unclear, some people prefer large batches like
8,192 to fill GPU RAM, others prefer batches less than 32

* Activation function -- RelLLU is good for hidden layers

* Number of iterations -- Just use early stopping instead






