Machine Learning Security

10 Introduction to Artificial Neural Networks with Keras

Artificial Neural Networks (ANNs)

- Inspired by our brains
- ANNs are at the very core of deep learning
- Versatile, powerful, and scalable; used by
 - Google Images
 - Apple's Siri
 - YouTube

Topics

- From Biological to Artificial Neurons
- Biological Neurons
- Logical Computations with Neurons
- The Perceptron
- The Multilayer Perceptron and Backpropagation
- Regression MLPs
- Classification MLPs
- Implementing MLPs with Keras
- Fine-Tuning Neural Network Hyperparameters

From Biological to Artificial Neurons

History of ANNs

- Introduced in 1943 for propositional logic
- Long winter for ANNs
- In 1990s, other ML systems were developed, such as support vector machines
- Now there's a new wave of interest in ANNs

The Case for ANNs

- Huge quantity of data now available
 - ANNs often outperform on very large and complex problems
- Training algorithms have improved
- Theoretical problems like local minima turned out to be benign in practice
 - Local optima often almost as good as the global optimum
- ANNs have entered a virtuous cycle of funding and progress

Biological Neurons

Biological Neurons

- dendrites are the branching extensions
- axon carries the output signal far away

Biological Neurons

- Short electric pulses called action potentials travel along the axons and release neurotransmitters at the synapses
- When a neuron receives enough neurotransmitters, it fires

Biological Neural Networks

- Each neuron is simple
- Computations are done by the network of many neurons working together
- This is a sample of human cortex

Logical Computations with Neurons

Logical Computations with Neurons

Simple On/Off neurons act like logic gates

The Perceptron

The Perceptron

- Developed in 1957
- Neurons are
 - Threshold Logic Units (TLUs) or
 - Linear Threshold Units (LTUs)
- Computes a linear function of inputs

 $z = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n + b = w_T x + b$

• Applies a step function to the result

 $h_w(\mathbf{x}) = step(z)$

TLU (Threshold Logic Unit)

- One TLU can perform
 binary classification
- Input data like petal width and height
- Output sorts inputs into two categories
- Training will determine the correct weights *w* and bias *b*

Perceptron

- A layer of TLUs
- Every TLU is connected to every input
 - fully connected layer or
 - dense layer
- Inputs are called the *input layer*
- TLUs are the output layer

Perceptron

 This perceptron can classify instances into three classes

Training a Perceptron

- Hebb's rule or Hebbian Learning
 - When a neuron triggers another neuron often
 - The connection between them gets stronger
 - "Cells that fire together, wire together"
- Perceptrons use the error of a prediction also
 - Reinforces connections that reduce error

Training a Perceptron

Resembles stochastic gradient descent

$$w_{i,j}{}^{(ext{next step})} = w_{i,j} + \eta \left(y_j - \hat{y}_j
ight) x_i$$

In this equation:

- wi, j is the connection weight between the *i*th input and the *j*th neuron.
- xi is the *i*th input value of the current training instance.
- \hat{y}_j is the output of the *j*th output neuron for the current training instance.
- y_j is the target output of the jth output neuron for the current training instance.
- η is the learning rate (see <u>Chapter 4</u>).

Limitations of a Perceptron

- Calculation is linear in all inputs
- Cannot compute XOR

	x1 = 0	x1 = 1
x2 = 0	0	1
x2 = 1	1	0

- Inputs at bottom
 - All weights 1; Bias: -3/2 and -1/2
 - Each neuron outputs with a step function
 - If > 0, output 1
 - If <= 0, output 0

Ch 10a

The Multilayer Perceptron and Backpropagation

Multilayer Perceptron

- Signal flows one direction
- This is a feedforward neural network (FNN)
- If there's a deep stack of hidden layers, it's a *deep neural network*

Backpropagation

- In 1970, reverse-mode automatic differentiation or reversemode autodiff was developed
- Can calculate the gradient of the error for all parameters
 - In two passes through the network
 - One forward, one backward
- Makes gradient descent much easier to calculate
- The combination of reverse-mode autodiff and gradient descent is called *backpropagation* or *backprop*

Backpropagation Steps

- Initialize all weights randomly
- Use a mini-batch, such as 32 instances
- Run the batch through the network to the end, keeping all calculated values
- Measure the network error
- Compute how much each weight and bias contributed to the error analytically with the chain rule
- Perform a gradient descent step in the direction to best lower the error

Activation Functions

- Must use a function with a gradient, not a step function, like:
 - Sigmoid σ(z) = 1 / (1 + exp(-z))
 - Hyperbolic tangent tanh(z) = 2σ(2z) 1
 - Rectified linear unit function ReLU(z) = max(0, z)
 - Fast to compute
 - The default

Regression MLPs

Predicting a Single Value

One output
 neuron

Predicting a 2-D Value

- Two output neurons
- Ex: specify X and Y coordinates of the center of an object in a image

Activation Functions

- Output neuron's activation function
 - For varying value, leave its output unchanged
 - To guarantee positive value, use
 - ReLU, or
 - softplus softplus(z) = log(1 + exp(z))
 - Smooth variant of ReLU
 - To restrict range, use sigmoid or tanh

Error Measurement

- Usually, mean squared error
- If you have a lot of outliers, use
 - Absolute error, or
 - Huber loss, which combines both
Typical Regression MLP Architecture

Hyperparameter	Typical value
# hidden layers	Depends on the problem, but typically 1 to 5
# neurons per hidden layer	Depends on the problem, but typically 10 to 100
# output neurons	1 per prediction dimension
Hidden activation	ReLU
Output activation	None, or ReLU/softplus (if positive outputs) or sigmoid/tanh (if bounded outputs)
Loss function	MSE, or Huber if outliers

Classification MLPs

Binary Classification

- One output
 neuron
- Sigmoid activation function
- Output between
 0 and 1
- Probability of positive class

Multilabel Classification

- Ex: label email spam and urgent
- Two output neurons
- Using sigmoid activation function
- Outputs are probabilities of each positive class

Multilabel Classification

- If only one class per instance is allowed, use softmax activation function for the whole output layer
- Makes total probability one

Softmax

- Assigns a probability to each class
- The total of them is always 1

$$\hat{p}_{k} = \sigma(\mathbf{s}(\mathbf{x}))_{k} = rac{\exp \left(s_{k}\left(\mathbf{x}
ight)
ight)}{\sum_{j=1}^{K} \exp \left(s_{j}\left(\mathbf{x}
ight)
ight)}$$

- K is the number of classes.
- s(x) is a vector containing the scores of each class for the instance x.
- σ(s(x))k is the estimated probability that the instance x belongs to class k, given the scores of each class for that instance.

Typical Classification MLP Architecture

Hyperparameter	Binary classification	Multilabel binary classification	Multiclass classification	
# hidden layers	Typically 1 to 5 layers, depending on the task			
# output neurons	1	1 per binary label	1 per class	
Output layer activation	Sigmoid	Sigmoid	Softmax	
Loss function	X-entropy	X-entropy	X-entropy	

Cross Entropy

- Cost function for multilabel classification
- If predictions are correct, that is near 1 for correct predictions, the cross entropy is near 0
- Erroneous predictions make the cross entropy larger

Equation 4-22. Cross entropy cost function

$$J(oldsymbol{\Theta}) = -rac{1}{m}\sum_{i=1}^m \sum_{k=1}^K y_k^{(i)}\log\left({\hat p}_k^{(i)}
ight)$$

In this equation, $y_k^{(i)}$ is the target probability that the *i*th instance belongs to class *k*. In general, it is either equal to 1 or 0, depending on whether the instance belongs to the class or not.

Ch 10b

Implementing MLPs with Keras

ML 101: Computer Vision

- Fashion MNIST
- 28x28 grayscale images of clothing

Loading the Dataset

```
import tensorflow as tf
```

fashion_mnist = tf.keras.datasets.fashion_mnist.load_data()
(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist
X_train, y_train = X_train_full[:-5000], y_train_full[:-5000]
X_valid, y_valid = X_train_full[-5000:], y_train_full[-5000:]

X_train, X_valid, X_test = X_train / 255., X_valid / 255., X_test / 255.

- Load images
- Set aside a validation set
- Divide by 255 to normalize the brightness values

Creating the Model

- Sequential makes the usual model, with a single stack of layers
- Flatten converts the 28x28 array to a one-dimensional list of 784 values
- Dense makes the hidden layers, with the ReLU activation function
- The final **Dense** makes the output neurons, with softmax to make all the probabilities total to 1

```
model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=[28, 28]),
    tf.keras.layers.Dense(300, activation="relu"),
    tf.keras.layers.Dense(100, activation="relu"),
    tf.keras.layers.Dense(10, activation="softmax")
])
```


>>> model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
flatten (Flatten)	(None, 784)	0
dense (Dense)	(None, 300)	235500
dense_1 (Dense)	(None, 100)	30100
dense_2 (Dense)	(None, 10)	1010
Total params: 266,610 Trainable params: 266,610 Non-trainable params: 0		

Compiling the Model

- **Crossentropy** is the appropriate error measure for a task where the model must assign only one of many labels
- **sgd** is Stochastic Gradient Descent (with backpropagation)
 - You usually want to specify learning_rate; here we accept the default of 0.01
- metrics=["accuracy"] measures accuracy during training and evaluation

Training with fit()

- **1719** is the number of mini-batches
- accuracy on training set and validation set are shown

Training with fit()

- More accurate on training set than validation set
- A small amount of overfitting

Learning Curves

Improving Performance

- Tune the hyperparameters
 - First, adjust learning_rate
 - Then try changing number of layers, neurons per layer, and activation functions

Wide & Deep Neural Network

- Introduced in 2016
- Inputs connect directly to outputs
- It can learn both
 - **deep patterns** (through all the layers), and
 - simple rules (through the short path)

Creating Layers

```
normalization_layer = tf.keras.layers.Normalization()
hidden_layer1 = tf.keras.layers.Dense(30, activation="relu")
hidden_layer2 = tf.keras.layers.Dense(30, activation="relu")
concat_layer = tf.keras.layers.Concatenate()
output_layer = tf.keras.layers.Dense(1)
```

- normalization layer standardizes inputs
- hidden layers operate as usual
- concatenate layer combines all the inputs into one tensor
- output layer operates as usual

Putting the Layers in Order

- concat combines the normalized input and the deep learning output
- model creates the model

```
input_ = tf.keras.layers.Input(shape=X_train.shape[1:])
normalized = normalization_layer(input_)
hidden1 = hidden_layer1(normalized)
hidden2 = hidden_layer2(hidden1)
concat = concat_layer([normalized, hidden2])
output = output_layer(concat)

model = tf.keras.Model(inputs=[input_], outputs=[output])
```

Handling Multiple Inputs

Some inputs go wide, others go deep

```
input_wide = tf.keras.layers.Input(shape=[5]) # features 0 to 4
input_deep = tf.keras.layers.Input(shape=[6]) # features 2 to 7
norm_layer_wide = tf.keras.layers.Normalization()
norm_layer_deep = tf.keras.layers.Normalization()
norm_wide = norm_layer_wide(input_wide)
norm_deep = norm_layer_deep(input_deep)
hidden1 = tf.keras.layers.Dense(30, activation="relu")(norm_deep)
hidden2 = tf.keras.layers.Dense(30, activation="relu")(hidden1)
concat = tf.keras.layers.concatenate([norm_wide, hidden2])
output = tf.keras.layers.Dense(1)(concat)
model = tf.keras.Model(inputs=[input_wide, input_deep], outputs=[output])
```


When to Use Multiple Outputs

- The task may demand it, such as locating and classifying the main object in a picture
 - This is both regression and classification
- You may have multiple independent tasks on the same data
 - One network is often better than several, because it can learn features that are useful across tasks

When to Use Multiple Outputs

- For regularization
 - The auxiliary output can ensure that the underlying part of the network learns something useful on its own

Multiple Outputs

- Each output needs its own loss function
- The data needs labels for each output

Dynamic Models

- Keras can be used to make models without a fixed structure
- Including for loops, if statement, etc.

Using TensorBoard for Visualization

 Can view learning curves, statistics, find speed bottlenecks, and more

Fine-Tuning Neural Network Hyperparameters

Hyperparameters

- A basic MLP has:
 - Number of layers
 - Number of neurons
 - Activation functions
 - Weight initialization logic
 - Optimizer
 - Learning rate
 - Batch size
 - etc.

Tuning Strategies

- Scikit-learn offers grid search and randomized search options
- Keras Tuner integrates with TensorBoard
 - Optimizes hyperparameters using SGD or Adam (like SGD but varies the learning rate)

Number of Hidden Layers

- A MLP with one hidden layer can theoretically model anything
- But for complex problems, deep models have a higher parameter efficiency
 - Models with fewer neurons
- Because, like human brains, one layer finds low-level components like edges
- Higher levels look at larger-scale features
- Highest level finds whole meaningful shapes, like faces

Transfer learning

- A new model can start from pre-trained lower levels
- Image classification and speech recognition models typically use dozens or hundreds of layers
- But rarely are trained from scratch
 - You reuse parts of a pre-trained network that performs a similar task

Number of Neurons per Hidden Layer

- Input and output layers are set by the problem
 - MNIST has 28 x 28 inputs and 10 outputs
- Old way: hidden layers in a pyramid shape
 - More neurons at the lower layers
 - For MNIST, 300, 200, 100
- But using the same number of neurons in each layer seems to work better, and is now the standard
- One way to select numbers:
 - Gradually increase the # of neurons per payer and the # of layers until you get overfitting

Stretch Pants

- Start with more layers and neurons than you need
- Use early stopping and other regularization to prevent excessive overfitting
- This avoids the problem of "bottleneck" layers
 - Too weak to represent the data
 - Information is lost and cannot be recovered
Learning Rate

- The most important hyperparameter
- Optimal learning rate is half the maximum learning rate
 - Above that, the model diverges
- One way: train the model for a few iterations at a very low learning rate like 10⁻⁵
 - Gradually increase the rate to a large value like 10
 - Find the value where loss starts to rise dramatically
 - Use a rate 1/10 of that rate

Other Parameters

- Optimizer -- discussed in later chapters
- **Batch size** -- unclear, some people prefer large batches like 8,192 to fill GPU RAM, others prefer batches less than 32
- Activation function -- ReLU is good for hidden layers
- Number of iterations -- Just use early stopping instead

Ch 10c