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• Inspired by our brains


• ANNs are at the very core of deep learning


• Versatile, powerful, and scalable; used by


• Google Images


• Apple's Siri


• YouTube

Artificial Neural Networks (ANNs)



• From Biological to Artificial Neurons 

• Biological Neurons 

• Logical Computations with Neurons 

• The Perceptron 

• The Multilayer Perceptron and Backpropagation 

• Regression MLPs 

• Classification MLPs 

• Implementing MLPs with Keras 

• Fine-Tuning Neural Network Hyperparameters

Topics



From Biological to Artificial Neurons



• Introduced in 1943 for propositional logic


• Long winter for ANNs


• In 1990s, other ML systems were developed, such as support 
vector machines


• Now there's a new wave of interest in ANNs

History of ANNs



• Huge quantity of data now available


• ANNs often outperform on very large and complex problems


• Training algorithms have improved


• Theoretical problems like local minima turned out to be benign in 
practice


• Local optima often almost as good as the global optimum


• ANNs have entered a virtuous cycle of funding and progress

The Case for ANNs



Biological Neurons



• dendrites are the branching extensions


• axon carries the output signal far away

Biological Neurons



• Short electric pulses called action potentials travel along the 
axons and release neurotransmitters at the synapses


• When a neuron receives enough neurotransmitters, it fires

Biological Neurons



• Each neuron is simple


• Computations are done by the network of many neurons working 
together


• This is a sample of human cortex

Biological Neural Networks



Logical Computations with Neurons



• Simple On/Off neurons act like logic gates

Logical Computations with Neurons



The Perceptron



• Developed in 1957


• Neurons are 


• Threshold Logic Units (TLUs) or 


• Linear Threshold Units (LTUs)


• Computes a linear function of inputs


• Applies a step function to the result

The Perceptron



• One TLU can perform 
binary classification


• Input data like petal 
width and height


• Output sorts inputs into 
two categories


• Training will determine 
the correct weights w 
and bias b

TLU (Threshold Logic Unit)



• A layer of TLUs


• Every TLU is 
connected to every 
input


• fully connected 
layer or


• dense layer 

• Inputs are called 
the input layer 

• TLUs are the 
output layer

Perceptron



• This perceptron 
can classify 
instances into 
three classes

Perceptron



• Hebb's rule or Hebbian Learning 

• When a neuron triggers another neuron often


• The connection between them gets stronger


• "Cells that fire together, wire together"


• Perceptrons use the error of a prediction also


• Reinforces connections that reduce error

Training a Perceptron



• Resembles stochastic gradient descent

Training a Perceptron



• Calculation is linear in all inputs


• Cannot compute XOR

Limitations of a Perceptron

x1 = 0 x1 = 1
x2 = 0 0 1
x2 = 1 1 0



• Inputs at bottom


• All weights 1; Bias: -3/2 and -1/2


• Each neuron outputs with a step 
function


• If > 0, output 1


• If <= 0, output 0

Two Perceptron Layers Can Do XOR



0 

   0 + 0 - 1/2 = -1/2  

0 0 

    0 + 0 - 3/2 = -1.5     0 + 0 - 1/2 = -0.5 

0 0

Two Perceptron Layers Can Do XOR



0 

    -1 + 1 - 1/2 = -1/2  

1 1 

    1 + 1 - 3/2 = 0.5     1 + 1 - 1/2 = 1.5 

1 1

Two Perceptron Layers Can Do XOR



1 

    0 + 1 - 1/2 = 1/2  

0 1 

    0 + 1 - 3/2 = -0.5     0 + 1 - 1/2 = 0.5 

0 1

Two Perceptron Layers Can Do XOR



1 

    0 + 1 - 1/2 = 1/2  

0 1 

    1 + 0 - 3/2 = -0.5     1 + 0 - 1/2 = 0.5 

1 0

Two Perceptron Layers Can Do XOR
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The Multilayer Perceptron and Backpropagation



• Signal flows one 
direction


• This is a 
feedforward neural 
network (FNN) 

• If there's a deep 
stack of hidden 
layers, it's a deep 
neural network

Multilayer Perceptron



• In 1970, reverse-mode automatic differentiation or reverse-
mode autodiff was developed


• Can calculate the gradient of the error for all parameters


• In two passes through the network


• One forward, one backward


• Makes gradient descent much easier to calculate


• The combination of reverse-mode autodiff and gradient descent 
is called backpropagation or backprop

Backpropagation



• Initialize all weights randomly


• Use a mini-batch, such as 32 instances


• Run the batch through the network to the end, keeping all 
calculated values


• Measure the network error


• Compute how much each weight and bias contributed to the 
error analytically with the chain rule


• Perform a gradient descent step in the direction to best lower the 
error

Backpropagation Steps



• Must use a function with a gradient, not a step function, like:


• Sigmoid


• Hyperbolic tangent


• Rectified linear unit function

• Fast to compute

• The default

Activation Functions



Regression MLPs



• One output 
neuron

Predicting a 
Single Value



• Two output 
neurons


• Ex: specify X and 
Y coordinates of 
the center of an 
object in a image

Predicting a 
2-D Value



• Output neuron's activation function


• For varying value, leave its output unchanged


• To guarantee positive value, use


• ReLU, or


• softplus 

• Smooth  variant of ReLU


• To restrict range, use sigmoid or tanh

Activation Functions



• Usually, mean squared error


• If you have a lot of outliers, use


• Absolute error, or


• Huber loss, which combines both

Error Measurement



Typical Regression MLP Architecture



Classification MLPs



• One output 
neuron


• Sigmoid 
activation 
function


• Output between 
0 and 1


• Probability of 
positive class

Binary 
Classification



• Ex: label email 
spam and 
urgent


• Two output 
neurons


• Using sigmoid 
activation 
function


• Outputs are 
probabilities of 
each positive 
class

Multilabel 
Classification



• If only one class 
per instance is 
allowed, use 
softmax 
activation 
function for the 
whole output 
layer


• Makes total 
probability one

Multilabel 
Classification



• Assigns a probability to each class


• The total of them is always 1

Softmax



Typical Classification MLP 
Architecture



• Cost function for multilabel classification


• If predictions are correct, that is near 1 for correct predictions, 
the cross entropy is near 0


• Erroneous predictions make the cross entropy larger

Cross Entropy
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Implementing MLPs with Keras



• Fashion MNIST


• 28x28 grayscale images of clothing

ML 101: Computer Vision



• Load images


• Set aside a validation set


• Divide by 255 to normalize the brightness values

Loading the Dataset



• Sequential makes the usual model, with a single stack of layers  

• Flatten converts the 28x28 array to a one-dimensional list of 784 
values


• Dense makes the hidden layers, with the ReLU activation 
function


• The final Dense makes the output neurons, with softmax to 
make all the probabilities total to 1

Creating the Model







• Crossentropy is the appropriate error measure for a task where 
the model must assign only one of many labels


• sgd is Stochastic Gradient Descent (with backpropagation)


• You usually want to specify learning_rate; here we accept the 
default of 0.01


• metrics=["accuracy"] measures accuracy during training and 
evaluation

Compiling the Model



Training with fit()

•  1719 is the number of mini-batches


• accuracy on training set and validation set are shown



Training with fit()

• More accurate on training set than validation set


• A small amount of overfitting



Learning Curves



• Tune the hyperparameters


• First, adjust learning_rate


• Then try changing number of layers, neurons per layer, and 
activation functions

Improving Performance



• Introduced in 2016


• Inputs connect directly to outputs


• It can learn both


•  deep patterns (through all the 
layers), and


•  simple rules (through the short 
path)

Wide & Deep Neural Network



• normalization layer standardizes inputs


• hidden layers operate as usual


• concatenate layer combines all the inputs into one tensor


• output layer operates as usual

Creating Layers



• concat combines the normalized input and the deep learning 
output


• model creates the model

Putting the Layers in Order



• Some inputs go wide, others go deep

Handling Multiple Inputs



• The task may demand it, such as 
locating and classifying the main 
object in a picture


• This is both regression and 
classification


• You may have multiple 
independent tasks on the same 
data


• One network is often better than 
several, because it can learn 
features that are useful across 
tasks

When to Use Multiple Outputs



• For regularization


• The auxiliary output can ensure 
that the underlying part of the 
network learns something 
useful on its own

When to Use Multiple Outputs



• Each output needs its own loss function


• The data needs labels for each output

Multiple Outputs



• Keras can be used to make models without a fixed structure


• Including for loops, if statement, etc.

Dynamic Models



• Can view 
learning 
curves, 
statistics, 
find speed 
bottlenecks, 
and more

Using TensorBoard for Visualization



Fine-Tuning Neural Network Hyperparameters



• A basic MLP has:


• Number of layers


• Number of neurons


• Activation functions


• Weight initialization logic


• Optimizer


• Learning rate


• Batch size


• etc.

Hyperparameters



• Scikit-learn offers grid search and randomized search options


• Keras Tuner integrates with TensorBoard


• Optimizes hyperparameters using SGD or Adam (like SGD but 
varies the learning rate)

Tuning Strategies



• A MLP with one hidden layer can theoretically model anything


• But for complex problems, deep models have a higher 
parameter efficiency 

• Models with fewer neurons


• Because, like human brains, one layer finds low-level 
components like edges


• Higher levels look at larger-scale features


• Highest level finds whole meaningful shapes, like faces

Number of Hidden Layers



• A new model can start from pre-trained lower levels


• Image classification and speech recognition models typically use 
dozens or hundreds of layers


• But rarely are trained from scratch


• You reuse parts of a pre-trained network that performs a 
similar task

Transfer learning 



• Input and output layers are set by the problem


• MNIST has 28 x 28 inputs and 10 outputs


• Old way: hidden layers in a pyramid shape


• More neurons at the lower layers


• For MNIST, 300, 200, 100


• But using the same number of neurons in each layer seems to 
work better, and is now the standard


• One way to select numbers:


• Gradually increase the # of neurons per payer and the # of 
layers until you get overfitting

Number of Neurons per Hidden Layer



• Start with more layers and neurons than you need


• Use early stopping and other regularization to prevent excessive 
overfitting


• This avoids the problem of "bottleneck" layers


• Too weak to represent the data


• Information is lost and cannot be recovered

Stretch Pants



• The most important hyperparameter


• Optimal learning rate is half the maximum learning rate


• Above that, the model diverges


• One way: train the model for a few iterations at a very low 
learning rate like 10-5


• Gradually increase the rate to a large value like 10


• Find the value where loss starts to rise dramatically


• Use a rate 1/10 of that rate

Learning Rate



• Optimizer -- discussed in later chapters


• Batch size -- unclear, some people prefer large batches like 
8,192 to fill GPU RAM, others prefer batches less than 32


•  Activation function -- ReLU is good for hidden layers


• Number of iterations --  Just use early stopping instead

Other Parameters
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