
Machine Learning
Security

11 Training Deep Neural
Networks

Made Oct 27, 2023

• In Ch 10, we made simple Artificial Neural Networks (ANNs) with
just a few layers

• But more complex problems

• Such as detecting hundreds of types of objects in high-
resolution images

• May need a deep ANN

• 10 or more layers

• Each with hundreds of neurons

• Hundreds of thousands of connections

Complex Problems

Training Problems

• The Vanishing/Exploding Gradients Problem

• Reusing Pretrained Layers

• Faster Optimizers

• Learning Rate Scheduling

• Avoiding Overfitting Through Regularization

• Summary and Practical Guidelines

Topics

The Vanishing/Exploding Gradients Problem

• The top layers
are more
important during
backprop

• The lower layers
have "vanishing
gradients"

• So each cycle of
learning doesn't
change the lower
layers much

Vanishing Gradients

• Sometimes the lower layers have larger "exploding gradients"

• Most often in recurrent neural networks

• The general problem is unstable gradients

• Different layers may learn at different speeds

• This problem was so serious, DNNs were mostly abandoned in
the early 2000s

• In 2010, researchers explained the problem

Exploding Gradients

• Large or small inputs enter saturation region

• Little or no gradient to guide learning

Activation Function Saturation

• Connection weights of each layer must be initialized randomly
from this distribution

• fan-in is the number of inputs to a layer

• fan-out is the number of outputs from a layer

Glorot Initialization

Initialization Parameters for Various
Activation Functions

• He initialization is best for the most powerful functions, like
Swish

• ReLU has slope zero for input < 0

• During training, many neurons "die"

• Their output is always zero

Dying ReLUs

• Doesn't have a region of zero slope

• Does have an abrupt change of slope at z=0

• This can make gradient descent bounce around

Leaky ReLU

• Smooth variants of ReLU

• Exponential Linear Unit (ELU)

• Scaled ELU (SELU)

ELU and SELU

• A multi-layer perceptron using SELU for each hidden layer

• will self-normalize

• Each layer's output will tend to a mean of 0 and std dev 1

• Solving the vanishing/exploding gradients problem

• BUT only when certain conditions apply (see next slide)

• So SELU did not become popular

Self-Normalizing

Conditions for Self-Normalization

• ɸ is the Gaussian cumulative distribution function

• These work well for complex tasks

GELU, Swish, and Mish

• He initialization and Swish reduces the danger of vanishing/
exploding gradients

• But they may come back during training

• In 2015, a new technique was proposed: batch normalization

• Adds an operation before or after the activation function of each
hidden layer

• Zero-centers and normalizes each input

• Scales and shifts the result with two new parameters per layer

Batch Normalization

Batch Normalization

• Doesn't matter for this small model

• Can greatly improve deeper networks

Batch Normalization

Batch Normalization

• During training, batch normalization is recalculated for each
batch

• Prediction for a single instance can't do that

• No way to calculate mean or std dev for one instance

• The model calculates an exponential moving average of the
mean and std dev during training

• And uses that after training is done

Predictions

• It makes models converge in up to 14 times fewer iterations

• But each iteration requires more calculations

• Often, after training, the weights of each layer can be modified to
include the effect of the batch normalization layer

Batch Normalization Efficiency

• Momentum smooths the exponential moving averages

• Axis controls how many means and std dev values are
calculated for each batch

• Batch normalization has become one of the most-used layers in
deep networks

Hyperparameters

• Clip the gradients during backpropagation

• So they never exceed a threshold

• Commonly used in recurrent neural networks

• Where batch normalization is tricky

Gradient Clipping

Reusing Pretrained Layers

• Reuse lower layers
from a model trained
on a similar task

• Speeds up learning

• Requires less training
data

• Output layer should
usually be replaced to
match the new task

• Inputs may require
preprocessing to fit
the size expected by
the original model

Transfer Learning

• First try freezing all the reused layers

• Then unfreeze one or two of the top hidden layers

• See if performance improves

• You may need to drop the top hidden layers

• If you have more training data, you can train more layers

Freezing Layers

• Does not work well with small dense networks

• Because they learn few patterns

• Unlikely to be useful in other tasks

• Works best with deep comvolutional neural networks

• Which tend to learn feature detectors that are more general

When is Transfer Learning Best?

• Train an unsupervised model on unlabeled data, such as

• Autoencoder which learns representations of the input data

• Generative Adversarial Network (GAN) that generates data
similar to the training data and learns to discriminate real from
fake data

• Diffusion, which learns to generate images from noise

• Reuse the lower layers of that model for your new task

• This technique succeeded in 2006 and led to the revival of neural
networks and the success of deep learning

Unsupervised Pretraining

• Used in the early days of deep learning

• Train one layer at a time

• Used in the early days of deep learning

• Now we can just train the whole model  
at once

Greedy Layer-Wise Pretraining

• Consider face recognition

• But you have only a few pictures of each individual

• Pretrain on a lot of random pictures from the Web

• Train on detecting whether two pictures are of the same
person

• The lower levels of that model will serve for your new one

• Consider Natural Language Processing

• Start with a model trained on random Web data

• Train higher levels on the new data you want

Pretraining on an Auxiliary Task

• https://siliconangle.com/2023/10/18/companies-scrambling-keep-control-private-data-ai-models/

• Automatically generate labels from the data itself

• Such as by omitting a word from a sentence

• Then training a model to guess the word

Self-Supervised Learning

Ch 11a

Faster Optimizers

• Good initialization for weights

• Good activation function

• Batch normalization

• Reusing parts of a pretrained network

• New way: a faster optimizer

Four Ways to Speed Up Training

• Stochastic Gradient Descent (SGD)

• The old, slower way

• These are all faster:

• Momentum

• Nesterov Accelerated Gradient

• AdaGrad

• RMSProp

• Adam

Optimizers

• Regular gradient descent takes

• Large steps when the slope is steep

• Small steps when the slope is gentle

• Can converge very slowly down a gentle slope

Θ is the weights

η is the learning rate

J(Θ) is the cost function

SGD

• Imagine a bowling ball rolling down a hill

• Momentum optimization

• includes momentum from previous gradients

• Gradient determines acceleration, not speed

• Escapes from plateaus much faster than SGD 

β is the momentum (friction, typically 0.9)

Momentum

• Calculates the gradient looking ahead in the direction of the
momentum

• Almost always faster than regular momentum optimization

Nesterov Accelerated Gradient

Nesterov Accelerated Gradient

• Moves more towards the global optimum

• Instead of just down the steepest slope

AdaGrad

• Works for simple quadratic problems

• Often stops too early when training neural networks

• Scales the steps down and stops before reaching the optimum

• Don't use it

AdaGrad

• Improves AdaGrad by only accumulating recent iterations in the
gradient calculation

• Almost always works better than AdaGrad

• Was the preferred method until Adam was developed

RMSProp

• Adaptive Moment Estimation

• Combines features of momentum optimization and RMSProp

• Has hyperparameters

β1 is the momentum (typically 0.9)

β2 is the decay rate (typically 0.999)

ε is a smoothing term (typically 10-7)

η is the learning rate (default 0.001)

Adam

• Modifies the loss function of Adam

• In general, Adam performs better, so this isn't worth using most
of the time

AdaMax

• Adam optimization plus the Nesterov trick

• Often converges slightly faster than Adam

Nadam

• A variant of Adam

• Adds a regularization technique called weight decay

• Multiplies the weights at each training iteration by a decay factor
such as 0.99

AdamW

is best

• Most parameters are zero

• Apply strong l1 regularization

• As shown below, includes the sum of the absolute value of all
the weights in the loss function

Training Sparse Models

Learning Rate Scheduling

• Using a schedule to adjust learning rate is best

Learning Rate

• Power scheduling

• Drops gradually after each step

• Exponential scheduling

• Gradually drops by a factor of 10 every s steps

• Piecewise constant scheduling

• Constant learning rate for a number of epochs, then a different
rate for another number of epochs, etc.

• Performance scheduling

• Measure the validation error, reduce the learning rate when it
stops dropping

Schedules

• 1cycle scheduling

• Introduced in 2018

• Increases learning rate by a factor of 10 during first half of
training

• Then decreases it for the second half of training

• Converges much faster than other methods

Schedules

Avoiding Overfitting Through Regularization

• Early stopping

• l1 and l2 regularization

• l1 includes the sum of the absolute value of all the weights in the
loss function

• Ends up with a sparse model

• l2 includes the sum of the squares of all the weights in the loss
function

• Good for SGD, momentum optimization, and Nesterov
momentum optimization

• Not good for Adam and its variants

Regularization Techniques

• A popular regularization technique for deep neural networks

• Provides 1%-2% accuracy boost

• At each training step, some neurons "drop out"

• They are ignored for this step

• Probability of dropout is p (typically 10% - 50%)

• Produces a more robust network that generalizes better

Dropout Regularization

Dropout
Regularization

• In practice, only apply
dropout to top one to
three layers

• Excluding the output
layer

• Monte Carlo (MC) Dropout

• Averages many models with different random dropouts

• Max-Norm Regularization

• Forces sum of all the squared weights to stay below a
maximum

Other Regularization Methods

Summary and Practical Guidelines

Most Deep Neural Networks

A Simple Stack of Dense Layers

Ch 11b

