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• In Ch 10, we made simple Artificial Neural Networks (ANNs) with 
just a few layers


• But more complex problems


• Such as detecting hundreds of types of objects in high-
resolution images


• May need a deep ANN


• 10 or more layers


• Each with hundreds of neurons


• Hundreds of thousands of connections

Complex Problems



Training Problems



• The Vanishing/Exploding Gradients Problem 

• Reusing Pretrained Layers 

• Faster Optimizers 

• Learning Rate Scheduling 

• Avoiding Overfitting Through Regularization 

• Summary and Practical Guidelines

Topics



The Vanishing/Exploding Gradients Problem



• The top layers 
are more 
important during 
backprop


• The lower layers 
have "vanishing 
gradients"


• So each cycle of 
learning doesn't 
change the lower 
layers much

Vanishing Gradients



• Sometimes the lower layers have larger "exploding gradients" 


• Most often in recurrent neural networks


• The general problem is unstable gradients 

• Different layers may learn at different speeds


• This problem was so serious, DNNs were mostly abandoned in 
the early 2000s


• In 2010, researchers explained the problem

Exploding Gradients



• Large or small inputs enter saturation region


• Little or no gradient to guide learning

Activation Function Saturation



• Connection weights of each layer must be initialized randomly 
from this distribution


• fan-in is the number of inputs to a layer


• fan-out is the number of outputs from a layer

Glorot Initialization



Initialization Parameters for Various 
Activation Functions

• He initialization is best for the most powerful functions, like 
Swish



• ReLU has slope zero for input < 0


• During training, many neurons "die"


• Their output is always zero

Dying ReLUs



• Doesn't have a region of zero slope


• Does have an abrupt change of slope at z=0


• This can make gradient descent bounce around

Leaky ReLU



• Smooth variants of ReLU


• Exponential Linear Unit (ELU)


• Scaled ELU (SELU)

ELU and SELU



• A multi-layer perceptron using SELU for each hidden layer


• will self-normalize


• Each layer's output will tend to a mean of 0 and std dev 1


• Solving the vanishing/exploding gradients problem


• BUT only when certain conditions apply (see next slide)


• So SELU did not become popular

Self-Normalizing



Conditions for Self-Normalization



•  ɸ is the Gaussian cumulative distribution function


• These work well for complex tasks

GELU, Swish, and Mish



• He initialization and Swish reduces the danger of vanishing/
exploding gradients


• But they may come back during training


• In 2015, a new technique was proposed: batch normalization 

• Adds an operation before or after the activation function of each 
hidden layer


• Zero-centers and normalizes each input


• Scales and shifts the result with two new parameters per layer

Batch Normalization



Batch Normalization

• Doesn't matter for this small model


• Can greatly improve deeper networks



Batch Normalization



Batch Normalization





• During training, batch normalization is recalculated for each 
batch


•  Prediction for a single instance can't do that


• No way to calculate mean or std dev for one instance


• The model calculates an exponential moving average of the 
mean and std dev during training


• And uses that after training is done

Predictions



• It makes models converge in up to 14 times fewer iterations


• But each iteration requires more calculations


• Often, after training, the weights of each layer can be modified to 
include the effect of the batch normalization layer

Batch Normalization Efficiency



• Momentum smooths the exponential moving averages


• Axis controls how many means and std dev values are 
calculated for each batch


• Batch normalization has become one of the most-used layers in 
deep networks

Hyperparameters



• Clip the gradients during backpropagation


• So they never exceed a threshold


• Commonly used in recurrent neural networks


• Where batch normalization is tricky

Gradient Clipping



Reusing Pretrained Layers



• Reuse lower layers 
from a model trained 
on a similar task


• Speeds up learning


• Requires less training 
data


• Output layer should 
usually be replaced to 
match the new task


• Inputs may require 
preprocessing to fit 
the size expected by 
the original model

Transfer Learning



• First try freezing all the reused layers


• Then unfreeze one or two of the top hidden layers


• See if performance improves


• You may need to drop the top hidden layers


• If you have more training data, you can train more layers

Freezing Layers



• Does not work well with small dense networks


• Because they learn few patterns


• Unlikely to be useful in other tasks


• Works best with deep comvolutional neural networks


• Which tend to learn feature detectors that are more general

When is Transfer Learning Best?



• Train an unsupervised model on unlabeled data, such as


• Autoencoder which learns representations of the input data


• Generative Adversarial Network (GAN) that generates data 
similar to the training data and learns to discriminate real from 
fake data


•  Diffusion, which learns to generate images from noise


•  Reuse the lower layers of that model for your new task


• This technique succeeded in 2006 and led to the revival of neural 
networks and the success of deep learning

Unsupervised Pretraining



• Used in the early days of deep learning


• Train one layer at a time


• Used in the early days of deep learning


• Now we can just train the whole model  
at once

Greedy Layer-Wise Pretraining



• Consider face recognition


• But you have only a few pictures of each individual


• Pretrain on a lot of random pictures from the Web


• Train on detecting whether two pictures are of the same 
person


• The lower levels of that model will serve for your new one


• Consider Natural Language Processing


• Start with a model trained on random Web data


• Train higher levels on the new data you want

Pretraining on an Auxiliary Task



• https://siliconangle.com/2023/10/18/companies-scrambling-keep-control-private-data-ai-models/



• Automatically generate labels from the data itself


• Such as by omitting a word from a sentence


• Then training a model to guess the word

Self-Supervised Learning
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Faster Optimizers



• Good initialization for weights


• Good activation function


• Batch normalization


• Reusing parts of a pretrained network


• New way:  a faster optimizer

Four Ways to Speed Up Training



• Stochastic Gradient Descent (SGD)


• The old, slower way


• These are all faster:


• Momentum 

• Nesterov Accelerated Gradient 

• AdaGrad 

• RMSProp 

• Adam

Optimizers



• Regular gradient descent takes 


• Large steps when the slope is steep


• Small steps when the slope is gentle


• Can converge very slowly down a gentle slope


 


Θ is the weights 

η is the learning rate


J(Θ) is the cost function

SGD



• Imagine a bowling ball rolling down a hill


• Momentum optimization


• includes momentum from previous gradients


• Gradient determines acceleration, not speed


• Escapes from plateaus much faster than SGD 

β is the momentum (friction, typically 0.9)


Momentum



• Calculates the gradient looking ahead in the direction of the 
momentum


• Almost always faster than regular momentum optimization

Nesterov Accelerated Gradient



Nesterov Accelerated Gradient



• Moves more towards the global optimum


• Instead of just down the steepest slope

AdaGrad



• Works for simple quadratic problems


• Often stops too early when training neural networks


• Scales the steps down and stops before reaching the optimum 


• Don't use it

AdaGrad



• Improves AdaGrad by only accumulating recent iterations in the 
gradient calculation


• Almost always works better than AdaGrad


• Was the preferred method until Adam was developed

RMSProp



• Adaptive Moment Estimation


• Combines features of momentum optimization and RMSProp


• Has hyperparameters


β1 is the momentum (typically 0.9)


β2 is the decay rate (typically 0.999)


ε is a smoothing term (typically 10-7) 

η is the learning rate (default 0.001)

Adam



• Modifies the loss function of Adam


• In general, Adam performs better, so this isn't worth using most 
of the time

AdaMax



• Adam optimization plus the Nesterov trick


• Often converges slightly faster than Adam

Nadam



• A variant of Adam


• Adds a regularization technique called weight decay 

• Multiplies the weights at each training iteration by a decay factor 
such as 0.99

AdamW



***  
is best



• Most parameters are zero


• Apply strong l1 regularization


• As shown below, includes the sum of the absolute value of all 
the weights in the loss function

Training Sparse Models



Learning Rate Scheduling



• Using a schedule to adjust learning rate is best

Learning Rate



• Power scheduling 

• Drops gradually after each step


• Exponential scheduling 

• Gradually drops by a factor of 10 every s steps


• Piecewise constant scheduling 

• Constant learning rate for a number of epochs, then a different 
rate for another number of epochs, etc.


• Performance scheduling 

• Measure the validation error, reduce the learning rate when it 
stops dropping

Schedules



• 1cycle scheduling 

• Introduced in 2018


• Increases learning rate by a factor of 10 during first half of 
training


• Then decreases it for the second half of training


• Converges much faster than other methods

Schedules



Avoiding Overfitting Through Regularization



• Early stopping


• l1 and l2 regularization


• l1  includes the sum of the absolute value of all the weights in the 
loss function


• Ends up with a sparse model


• l2  includes the sum of the squares of all the weights in the loss 
function


• Good for SGD, momentum optimization, and Nesterov 
momentum optimization


• Not good for Adam and its variants

Regularization Techniques



• A popular regularization technique for deep neural networks


• Provides 1%-2% accuracy boost


• At each training step, some neurons "drop out"


• They are ignored for this step


• Probability of dropout is p (typically 10% - 50%)


• Produces a more robust network that generalizes better

Dropout Regularization



Dropout  
Regularization

• In practice, only apply 
dropout to top one to 
three layers


• Excluding the output 
layer



• Monte Carlo (MC) Dropout 

• Averages many models with different random dropouts


• Max-Norm Regularization 

• Forces sum of all the squared weights to stay below a 
maximum

Other Regularization Methods



Summary and Practical Guidelines



Most Deep Neural Networks



A Simple Stack of Dense Layers



Ch 11b


