Machine Learning
Security

Hands-0On
Machine Learning

11 Training Deep Neural with Scikit-Learn,
Keras & TensorFlow
Networks skttt

REILLY

Made Oct 27, 2023

Complex Problems

* In Ch 10, we made simple Artificial Neural Networks (ANNs) with
just a few layers

 But more complex problems

e Such as detecting hundreds of types of objects in high-
resolution images

« May need a deep ANN
10 or more layers
e Each with hundreds of neurons

e Hundreds of thousands of connections

Training Problems

« You may be faced with the problem of gradients growing ever smaller or
larger, when flowing backward through the DNN during training. Both of

these problems make lower layers very hard to train.

« You might not have enough training data for such a large network, or it

might be too costly to label.

e Training may be extremely slow.

o A model with millions of parameters would severely risk overfitting the
training set, especially if there are not enough training instances or if they

are too noisy.

Topics

* The Vanishing/Exploding Gradients Problem
- Reusing Pretrained Layers

- Faster Optimizers

- Learning Rate Scheduling

- Avoiding Overfitting Through Regularization

 Summary and Practical Guidelines

The Vanishing/Exploding Gradients Problem

Vanishing Gradients

Output Layer Coat
* The top layers .
are more

important during
bac kprOp Hidden Layer

Backprop

High gradients

* The lower layers Hidden Laver

have "vanishing Hidden Layer

gradients” |
Hidden Layer

e So each cycle of
learning doesn't
change the lower Hidden Layer
layers much

Hidden Layer
Low gradients

Pixels

Input Image

Exploding Gradients

 Sometimes the lower layers have larger "exploding gradients”
* Most often in recurrent neural networks
* The general problem is unstable gradients

* Different layers may learn at different speeds

* This problem was so serious, DNNs were mostly abandoned in
the early 2000s

* |In 2010, researchers explained the problem

Activation Function Saturation

* Large or small inputs enter saturation region

 Little or no gradient to guide learning

L >
7

{0 ope———)

0.8 - .
Saturating

0.6 -

0.4 - .
Saturating

0.2 - !
0.0

-0.2

Linear

Glorot Initialization

e Connection weights of each layer must be initialized randomly
from this distribution

Normal distribution with mean 0 and variance o = f(nlz
JE Tavg

Or a uniform distribution between — r and + r, with r» =

fanavg = (fanin + fanout) / 2.

e fan-in is the number of inputs to a layer

e fan-out is the number of outputs from a layer

Initialization Parameters for Various
Activation Functions

Table 11-1. Initialization parameters for each type of activation function

Initialization Activation functions o* (Normal)
Glorot None, tanh, sigmoid, softmax 1/ fanavg
He RelLU, Leaky RelLU, ELU, GELU, Swish, Mish 2 / fanin
LeCun SELU 1/ fanin

* He initialization is best for the most powerful functions, like
Swish

Dying RelLUs

0

RelLU has slope zero for input < O

During training, many neurons "die"

* Their output is always zero

Activation functions

= g
Kd
7
/
o~
___,-""'/ —— Heaviside
. / —-= RelU
- -== Sigmoid

N —— Tanh

-4 -3 2 =1 0 1 2 3 4

Derivatives
1.2
1.0 4 ‘x e —
0.8 4 / \

—
——‘ g

—

-_
o —

Leaky RelLU

 Doesn't have a region of zero slope
* Does have an abrupt change of slope at z=0

* This can make gradient descent bounce around

I
| =—— LeakyRelLU(z) = max(az, z)

ELU and SELU

 Smooth variants of RelLU
* Exponential Linear Unit (ELU)
* Scaled ELU (SELU)

3 - T -
— ELU,(Z)=a(e?—=1)iIfz<O0, else z /
> === SELU(z) =1.05ELU; 67(2)
1-
0
/
/
7’
] —rT T T s s s e s e an /.“ ...
PN e ity ey y:::rrrr™,™mm T
-4 -2 0 5 3

Self-Normalizing

* A multi-layer perceptron using SELU for each hidden layer
* will self-normalize
* Each layer's output will tend to a mean of 0 and std dev 1
e Solving the vanishing/exploding gradients problem
 BUT only when certain conditions apply (see next slide)

 So SELU did not become popular

Conditions for Self-Normalization

e The input features must be standardized: mean 0 and standard deviation 1.

« Every hidden layer’s weights must be initialized using LeCun normal initial-

ization. In Keras, this means setting kernel_initializer="1lecun_normal".

e The self-normalizing property is only guaranteed with plain MLPs. If you try

to use SELU in other architectures, like recurrent networks (see Chapter 15)

or networks with skip connections (i.e., connections that skip layers, such as

in Wide & Deep nets), it will probably not outperform ELU.

e You cannot use regularization techniques like £1 or 22 regularization, max-

norm, batch-norm, or regular dropout (these are discussed later in this

chapter).

GELU, Swish, and Mish

* ¢ is the Gaussian cumulative distribution function

 These work well for complex tasks

2.0 T
— GELU(Z) = Zz0(2)

271 === swish(z) = zo(2)

1.0 4 =rene Swishg=.6(2) =20(0.6 2)

o5 | "** Mish(z) = ztanh(softplus(z))
N —
........ ~~—""‘ﬂ1’.—?:r‘r.“
_OS
-1.0 '
=13 -3 =D -1 0 : 2

Batch Normalization

* He initialization and Swish reduces the danger of vanishing/
exploding gradients

* But they may come back during training

* |In 2015, a new technique was proposed: batch normalization

 Adds an operation before or after the activation function of each
hidden layer

e Zero-centers and normalizes each input

* Scales and shifts the result with two new parameters per layer

Batch Normalization

D

tf.
tf.

tf.
tf.

keras.
keras.
keras.

keras.
keras.

keras.
keras.

layers.
layers.
layers.

layers.
layers.

layers.
layers.

model = tf.keras.Sequential([
tf.
tf.
tf.

Flatten(input_shape=[28, 28]),

BatchNormalization(),

Dense(300, activation="relu",
kernel_initializer="he normal"),

BatchNormalization(),

Dense(100, activation="relu",
kernel_initializer="he_normal"),

BatchNormalization(),

Dense(10, activation="softmax")

e Doesn't matter for this small model

e Can greatly improve deeper networks

Batch Normalization

>>> model.summary()
Model: "sequential"

Layer (type) Output Shape Param #
flatten (Flatten) (None, 78) o
batch normalization (BatchNo (None, 784) 3136

dense (Dense) (None, 300) 235500
batch normalization_1 (Batch (None, 300) 1200
dense 1 (Dense) (None, 100) 30100
batch normalization_2 (Batch (None, 100) 400
dense 2 (Dense) (None, 10) 1010

Total params: 271,346

Batch Normalization

1 mpg)
1 = — X
1B —_— ;
L S5 (00 :
)
2 OB me ;
. x (1) _ B
3. ==
\/0’32 + &

e pu8 is the vector of input means, evaluated over the whole mini-batch B (it contains one mean

per input).
« mB is the number of instances in the mini-batch.

« o8 is the vector of input standard deviations, also evaluated over the whole mini-batch (it

contains one standard deviation per input).
e X(i) is the vector of zero-centered and normalized inputs for instance i.

e £ is a tiny number that avoids division by zero and ensures the gradients don’t grow too large

(typically 10-5). This is called a smoothing term.

o y is the output scale parameter vector for the layer (it contains one scale parameter per

input).

o ® represents element-wise multiplication (each input is multiplied by its corresponding out-

put scale parameter).

e B is the output shift (offset) parameter vector for the layer (it contains one offset parameter

per input). Each input is offset by its corresponding shift parameter.

e 2(i) is the output of the BN operation. It is a rescaled and shifted version of the inputs.

Predictions

* During training, batch normalization is recalculated for each
batch

* Prediction for a single instance can't do that
 No way to calculate mean or std dev for one instance

 The model calculates an exponential moving average of the
mean and std dev during training

* And uses that after training is done

Batch Normalization Efficiency

* |t makes models converge in up to 14 times fewer iterations
 But each iteration requires more calculations

« Often, after training, the weights of each layer can be modified to
iInclude the effect of the batch normalization layer

Hyperparameters

* Momentum smooths the exponential moving averages

* Axis controls how many means and std dev values are
calculated for each batch

 Batch normalization has become one of the most-used layers in
deep networks

Gradient Clipping

* Clip the gradients during backpropagation
* So they never exceed a threshold
« Commonly used in recurrent neural networks

 Where batch normalization is tricky

optimizer = tf.keras.optimizers.SGD(clipvalue=1.0)
model.compile([...], optimizer=optimizer)

Reusing Pretrained Layers

Transfer Learning

Reuse lower layers

T

from a model trained OUtIp”t | : T .
on a similar task T L Outlput
. l j = . N
Speeds up learning ddens L Hlddlen4 | @' e
Requires less training = Reuse . | Hidden3
data Hidden 3 '—P L___"l"":
1 -
Hidden 2]—»1 Hidden2 |,
Output layer should l E 1 4 Fixed weights
usually be replaced to Hidden 1]_,: Hidden1 |
match the new task I SRRy
_ [Input layer]—P Input layer
* Inputs may require Existing DNN LNew DNNforJ
preprocessing to fit for task A similar task B

the size expected by
the original model

Freezing Layers

* First try freezing all the reused layers

 Then unfreeze one or two of the top hidden layers
» See if performance improves

* You may need to drop the top hidden layers

 If you have more training data, you can train more layers

When is Transfer Learning Best?

* Does not work well with small dense networks
 Because they learn few patterns
* Unlikely to be useful in other tasks

 Works best with deep comvolutional neural networks

 Which tend to learn feature detectors that are more general

Unsupervised Pretraining

e Train an unsupervised model on unlabeled data, such as
* Autoencoder which learns representations of the input data

* Generative Adversarial Network (GAN) that generates data

similar to the training data and learns to discriminate real from
fake data

* Diffusion, which learns to generate images from noise
* Reuse the lower layers of that model for your new task

e This technique succeeded in 2006 and led to the revival of neural
networks and the success of deep learning

Greedy Layer-Wise Pretraining

* Used in the early days of deep learning

* Train one layer at a time

 Used in the early days of deep learning pa— -
Output
* Now we can just train the whole model P et

Hidden 3 J Hidden 3

\ J
1 1

Hidden 2 } I Hidden 2 @ I Hidden 2 [

" -

at once .

7~

.

4 R 4] e
Hidden 1 Hidden 1 @ r Hidden 1 5 Hidden 1 B
— % —%—
Input layer Input layer Input layer] Input layer]
/ Unlabeled data // Labeled data /
Unsupervised (e.g., autoencoders or GANSs) Supervised

Train layer 1 Train layer 2 Train layer 3 Train final model

Pretraining on an Auxiliary Task

* Consider face recognition
e But you have only a few pictures of each individual
* Pretrain on a lot of random pictures from the Web

e Train on detecting whether two pictures are of the same
person

 The lower levels of that model will serve for your new one
* Consider Natural Language Processing
e Start with a model trained on random Web data

e Train higher levels on the new data you want

Microsoft 365 Apps Microsoft 365 Copilot

8 & @&

Response

.....
e
Nag,
L]
e
.....
a
s
ol]
v
L]
”
L]
“
]
B
a
L]
o

Azure Open Al
Customer datais instance is

not stored or used maintained by
to train the model ‘ La rg € La ng u a g € Microsoft. OpenAl
has no access to

M Od el the data or the

model.
Modified A
" prompt Q%/\ Arure
(Pre-pmcessmg 3 = 4—)4 S22 OpenAJ‘

Grounding
. LLM
Microsoft Graph response -
RAl is performed
. on input prompt

5 N and output results

Semantic

Index “ E E 6‘ Groundmg

Post.-processmg Data flow (ﬁ = all requests are encrypted via HTTPS)
Your context and content 1 User prompts from Microsoft 365 Apps are sent to Copilot
emails, files, meetings, chats,
calendars and contacts

Copilot accesses Graph and Semantic Index for pre-processing
Copilot sends modified prompt to Large Language Model
Copilot receives LLM response

Customer Microsoft 365 Tenant Copilot accesses Graph and Semantic Index for post-processing

a v A WN

Copilot sends the response, and app command back to Microsoft 365 Apps

https://siliconangle.com/2023/10/18/companies-scrambling-keep-control-private-data-ai-models/

Self-Supervised Learning

 Automatically generate labels from the data itself
* Such as by omitting a word from a sentence

* Then training a model to guess the word

Faster Optimizers

Four Ways to Speed Up Training

* Good initialization for weights
* Good activation function
e Batch normalization

* Reusing parts of a pretrained network

* New way: a faster optimizer

Optimizers

» Stochastic Gradient Descent (SGD)
* The old, slower way

* These are all faster:
* Momentum
* Nesterov Accelerated Gradient
 AdaGrad
* RMSProp
* Adam

SGD

* Regular gradient descent takes
e Large steps when the slope is steep
 Small steps when the slope is gentle

e Can converge very slowly down a gentle slope

O <« 0-nVeJ(O)

© is the weights
n is the learning rate

J(0O) is the cost function

Momentum

* Imagine a bowling ball rolling down a hill

e Momentum optimization
* includes momentum from previous gradients
* (Gradient determines acceleration, not speed

* Escapes from plateaus much faster than SGD

1. m < fm — nVeJ (0)
2. 0 — 60+ m

B is the momentum (friction, typically 0.9)

Nesterov Accelerated Gradient

e Calculates the gradient looking ahead in the direction of the
momentum

* Almost always faster than regular momentum optimization

1. m < fm — nVeJ (0 + Sm)
2. 0 < 0+m

Nesterov Accelerated Gradient

2 T cost

AdaGrad

 Moves more towards the global optimum

* |nstead of just down the steepest slope

(Steepdémensmn) [T T T T Jcost
2

AdaGrad

- e O e -
----- -----
- -
< --

-~ -
~‘ “
- -

- aeaemeeeee-em--

/s
Gradient descent

9] (Flatter dimension)

AdaGrad

* Works for simple quadratic problems
e Often stops too early when training neural networks

* Scales the steps down and stops before reaching the optimum

e Don'tuse it

RMSProp

* Improves AdaGrad by only accumulating recent iterations in the
gradient calculation

* Almost always works better than AdaGrad

* Was the preferred method until Adam was developed

Adam

* Adaptive Moment Estimation

 Combines features of momentum optimization and RMSProp

 Has hyperparameters
B1 is the momentum (typically 0.9)
B2 is the decay rate (typically 0.999)
€ is a smoothing term (typically 10-7)

n is the learning rate (default 0.001)

AdaMax

e Modifies the loss function of Adam

* In general, Adam performs better, so this isn't worth using most
of the time

Nadam

 Adam optimization plus the Nesterov trick

* Often converges slightly faster than Adam

AdamW

* A variant of Adam
* Adds a regularization technique called weight decay

* Multiplies the weights at each training iteration by a decay factor
such as 0.99

* k%

IS best

Table 11-2. Optimizer comparison

Class Convergence speed
SGD *

SGD(momentum=. . .) o
SGD(momentum=..., nesterov=True) *x

Adagrad HrE

RMSprop e

Adam FrE

AdaMax o

Nadam FrE

Adami e

Convergence quality

*%%

k%%

*%%

* (stops too early)

*% or k%%

*% or *%%

*% or k%%

*% or *%%

*% or *%%

Training Sparse Models

 Most parameters are zero

* Apply strong 4 regularization

 As shown below, includes the sum of the absolute value of all
the weights in the loss function

Equation 4-10. Lasso regression cost function

J(0) = MSE(0) + 2a> ", |6;]

Learning Rate Scheduling

Learning Rate

* Using a schedule to adjust learning rate is best

Loss

n way too high: diverges

N n too high: suboptimal

- TS ——— /) just right

Start with a high learning rate then reduce it: perfect!

S~

Epoch

Schedules

 Power scheduling

* Drops gradually after each step
 Exponential scheduling

* Gradually drops by a factor of 10 every s steps
* Piecewise constant scheduling

* Constant learning rate for a number of epochs, then a different
rate for another number of epochs, etc.

 Performance scheduling

 Measure the validation error, reduce the learning rate when it
stops dropping

Schedules

* 1cycle scheduling

 |ntroduced in 2018

* Increases learning rate by a factor of 10 during first half of
training

 Then decreases it for the second half of training

e Converges much faster than other methods

Avoiding Overfitting Through Regularization

Regularization Techniques

« Early stopping

o { and {, regularization

® /, includes the sum of the absolute value of all the weights in the
loss function

 Ends up with a sparse model

® /, includes the sum of the squares of all the weights in the loss
function

e Good for SGD, momentum optimization, and Nesterov
momentum optimization

 Not good for Adam and its variants

Dropout Regularization

* A popular regularization technique for deep neural networks
* Provides 1%-2% accuracy boost
* At each training step, some neurons "drop out”
* They are ignored for this step
* Probability of dropout is p (typically 10% - 50%)

 Produces a more robust network that generalizes better

Dropout
Regularization

* |n practice, only apply
dropout to top one to
three layers

* Excluding the output
layer

Other Regularization Methods

« Monte Carlo (MC) Dropout
* Averages many models with different random dropouts
« Max-Norm Regularization

* Forces sum of all the squared weights to stay below a
maximum

Summary and Practical Guidelines

Most Deep Neural Networks

Table 11-3. Default DNN configuration

Hyperparameter

Kernel initializer

Activation function

Normalization

Regularization

Optimizer

Learning rate schedule

Default value

He initialization

ReLU if shallow; Swish if deep

None if shallow; batch norm if deep

Early stopping; weight decay if needed

Nesterov accelerated gradients or AdamW

Performance scheduling or 1cycle

A Simple Stack of Dense Layers

Table 11-4. DNN configuration for a self-normalizing net

Hyperparameter Default value

Kernel initializer LeCun initialization

Activation function SELU

Normalization None (self-normalization)
Regularization Alpha dropout if needed
Optimizer Nesterov accelerated gradients

Learning rate schedule Performance scheduling or 1cycle

