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Complex Problems

* In Ch 10, we made simple Artificial Neural Networks (ANNs) with
just a few layers

 But more complex problems

e Such as detecting hundreds of types of objects in high-
resolution images

« May need a deep ANN
10 or more layers
e Each with hundreds of neurons

e Hundreds of thousands of connections



Training Problems

« You may be faced with the problem of gradients growing ever smaller or
larger, when flowing backward through the DNN during training. Both of

these problems make lower layers very hard to train.

« You might not have enough training data for such a large network, or it

might be too costly to label.

e Training may be extremely slow.

o A model with millions of parameters would severely risk overfitting the
training set, especially if there are not enough training instances or if they

are too noisy.



Topics

* The Vanishing/Exploding Gradients Problem
- Reusing Pretrained Layers

- Faster Optimizers

- Learning Rate Scheduling

- Avoiding Overfitting Through Regularization

 Summary and Practical Guidelines



The Vanishing/Exploding Gradients Problem
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Exploding Gradients

 Sometimes the lower layers have larger "exploding gradients”
* Most often in recurrent neural networks
* The general problem is unstable gradients

* Different layers may learn at different speeds

* This problem was so serious, DNNs were mostly abandoned in
the early 2000s

* |In 2010, researchers explained the problem



Activation Function Saturation

* Large or small inputs enter saturation region

 Little or no gradient to guide learning
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Glorot Initialization

e Connection weights of each layer must be initialized randomly
from this distribution

Normal distribution with mean 0 and variance o = f(nlz
JE Tavg

Or a uniform distribution between — r and + r, with r» =

fanavg = (fanin + fanout) / 2.

e fan-in is the number of inputs to a layer

e fan-out is the number of outputs from a layer



Initialization Parameters for Various
Activation Functions

Table 11-1. Initialization parameters for each type of activation function

Initialization Activation functions o* (Normal)
Glorot None, tanh, sigmoid, softmax 1/ fanavg
He RelLU, Leaky RelLU, ELU, GELU, Swish, Mish 2 / fanin
LeCun SELU 1/ fanin

* He initialization is best for the most powerful functions, like
Swish



Dying RelLUs

0

RelLU has slope zero for input < O

During training, many neurons "die"

* Their output is always zero
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Leaky RelLU

 Doesn't have a region of zero slope
* Does have an abrupt change of slope at z=0

* This can make gradient descent bounce around

I
| =—— LeakyRelLU(z) = max(az, z)




ELU and SELU

 Smooth variants of RelLU
* Exponential Linear Unit (ELU)
* Scaled ELU (SELU)
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Self-Normalizing

* A multi-layer perceptron using SELU for each hidden layer
* will self-normalize
* Each layer's output will tend to a mean of 0 and std dev 1
e Solving the vanishing/exploding gradients problem
 BUT only when certain conditions apply (see next slide)

 So SELU did not become popular



Conditions for Self-Normalization

e The input features must be standardized: mean 0 and standard deviation 1.

« Every hidden layer’s weights must be initialized using LeCun normal initial-

ization. In Keras, this means setting kernel_initializer="1lecun_normal".

e The self-normalizing property is only guaranteed with plain MLPs. If you try

to use SELU in other architectures, like recurrent networks (see Chapter 15)

or networks with skip connections (i.e., connections that skip layers, such as

in Wide & Deep nets), it will probably not outperform ELU.

e You cannot use regularization techniques like £1 or 22 regularization, max-

norm, batch-norm, or regular dropout (these are discussed later in this

chapter).



GELU, Swish, and Mish

* ¢ is the Gaussian cumulative distribution function

 These work well for complex tasks
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Batch Normalization

* He initialization and Swish reduces the danger of vanishing/
exploding gradients

* But they may come back during training

* |In 2015, a new technique was proposed: batch normalization

 Adds an operation before or after the activation function of each
hidden layer

e Zero-centers and normalizes each input

* Scales and shifts the result with two new parameters per layer



Batch Normalization
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model = tf.keras.Sequential([
tf.
tf.
tf.

Flatten(input_shape=[28, 28]),

BatchNormalization(),

Dense(300, activation="relu",
kernel_initializer="he normal"),

BatchNormalization(),

Dense(100, activation="relu",
kernel_initializer="he_normal"),

BatchNormalization(),

Dense(10, activation="softmax")

e Doesn't matter for this small model

e Can greatly improve deeper networks




Batch Normalization

>>> model.summary()
Model: "sequential"

Layer (type) Output Shape Param #
flatten (Flatten)  (None, 78) o
batch normalization (BatchNo (None, 784) 3136

dense (Dense) (None, 300) 235500
batch normalization_1 (Batch (None, 300) 1200
dense 1 (Dense) (None, 100) 30100
batch normalization_2 (Batch (None, 100) 400
dense 2 (Dense) (None, 10) 1010

Total params: 271,346



Batch Normalization
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e pu8 is the vector of input means, evaluated over the whole mini-batch B (it contains one mean

per input).
« mB is the number of instances in the mini-batch.

« o8 is the vector of input standard deviations, also evaluated over the whole mini-batch (it

contains one standard deviation per input).
e X(i) is the vector of zero-centered and normalized inputs for instance i.

e £ is a tiny number that avoids division by zero and ensures the gradients don’t grow too large

(typically 10-5). This is called a smoothing term.

o y is the output scale parameter vector for the layer (it contains one scale parameter per

input).

o ® represents element-wise multiplication (each input is multiplied by its corresponding out-

put scale parameter).

e B is the output shift (offset) parameter vector for the layer (it contains one offset parameter

per input). Each input is offset by its corresponding shift parameter.

e 2(i) is the output of the BN operation. It is a rescaled and shifted version of the inputs.



Predictions

* During training, batch normalization is recalculated for each
batch

* Prediction for a single instance can't do that
 No way to calculate mean or std dev for one instance

 The model calculates an exponential moving average of the
mean and std dev during training

* And uses that after training is done



Batch Normalization Efficiency

* |t makes models converge in up to 14 times fewer iterations
 But each iteration requires more calculations

« Often, after training, the weights of each layer can be modified to
iInclude the effect of the batch normalization layer



Hyperparameters

* Momentum smooths the exponential moving averages

* Axis controls how many means and std dev values are
calculated for each batch

 Batch normalization has become one of the most-used layers in
deep networks



Gradient Clipping

* Clip the gradients during backpropagation
* So they never exceed a threshold
« Commonly used in recurrent neural networks

 Where batch normalization is tricky

optimizer = tf.keras.optimizers.SGD(clipvalue=1.0)
model.compile([...], optimizer=optimizer)




Reusing Pretrained Layers



Transfer Learning
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Freezing Layers

* First try freezing all the reused layers

 Then unfreeze one or two of the top hidden layers
» See if performance improves

* You may need to drop the top hidden layers

 If you have more training data, you can train more layers



When is Transfer Learning Best?

* Does not work well with small dense networks
 Because they learn few patterns
* Unlikely to be useful in other tasks

 Works best with deep comvolutional neural networks

 Which tend to learn feature detectors that are more general



Unsupervised Pretraining

e Train an unsupervised model on unlabeled data, such as
* Autoencoder which learns representations of the input data

* Generative Adversarial Network (GAN) that generates data

similar to the training data and learns to discriminate real from
fake data

* Diffusion, which learns to generate images from noise
* Reuse the lower layers of that model for your new task

e This technique succeeded in 2006 and led to the revival of neural
networks and the success of deep learning



Greedy Layer-Wise Pretraining

* Used in the early days of deep learning

* Train one layer at a time

 Used in the early days of deep learning pa— -
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Pretraining on an Auxiliary Task

* Consider face recognition
e But you have only a few pictures of each individual
* Pretrain on a lot of random pictures from the Web

e Train on detecting whether two pictures are of the same
person

 The lower levels of that model will serve for your new one
* Consider Natural Language Processing
e Start with a model trained on random Web data

e Train higher levels on the new data you want



Microsoft 365 Apps Microsoft 365 Copilot
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Self-Supervised Learning

 Automatically generate labels from the data itself
* Such as by omitting a word from a sentence

* Then training a model to guess the word






Faster Optimizers



Four Ways to Speed Up Training

* Good initialization for weights
* Good activation function
e Batch normalization

* Reusing parts of a pretrained network

* New way: a faster optimizer



Optimizers

» Stochastic Gradient Descent (SGD)
* The old, slower way

* These are all faster:
* Momentum
* Nesterov Accelerated Gradient
 AdaGrad
* RMSProp
* Adam



SGD

* Regular gradient descent takes
e Large steps when the slope is steep
 Small steps when the slope is gentle

e Can converge very slowly down a gentle slope

O <« 0-nVeJ(O)

© is the weights
n is the learning rate

J(0O) is the cost function



Momentum

* Imagine a bowling ball rolling down a hill

e Momentum optimization
* includes momentum from previous gradients
* (Gradient determines acceleration, not speed

* Escapes from plateaus much faster than SGD

1. m < fm — nVeJ (0)
2. 0 — 60+ m

B is the momentum (friction, typically 0.9)



Nesterov Accelerated Gradient

e Calculates the gradient looking ahead in the direction of the
momentum

* Almost always faster than regular momentum optimization

1. m < fm — nVeJ (0 + Sm)
2. 0 < 0+m



Nesterov Accelerated Gradient
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AdaGrad

 Moves more towards the global optimum

* |nstead of just down the steepest slope
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AdaGrad

* Works for simple quadratic problems
e Often stops too early when training neural networks

* Scales the steps down and stops before reaching the optimum

e Don'tuse it



RMSProp

* Improves AdaGrad by only accumulating recent iterations in the
gradient calculation

* Almost always works better than AdaGrad

* Was the preferred method until Adam was developed



Adam

* Adaptive Moment Estimation

 Combines features of momentum optimization and RMSProp

 Has hyperparameters
B1 is the momentum (typically 0.9)
B2 is the decay rate (typically 0.999)
€ is a smoothing term (typically 10-7)

n is the learning rate (default 0.001)



AdaMax

e Modifies the loss function of Adam

* In general, Adam performs better, so this isn't worth using most
of the time



Nadam

 Adam optimization plus the Nesterov trick

* Often converges slightly faster than Adam



AdamW

* A variant of Adam
* Adds a regularization technique called weight decay

* Multiplies the weights at each training iteration by a decay factor
such as 0.99



* k%

IS best

Table 11-2. Optimizer comparison

Class Convergence speed
SGD *

SGD(momentum=. . .) o
SGD(momentum=..., nesterov=True) *x

Adagrad HrE

RMSprop e

Adam FrE

AdaMax o

Nadam FrE

Adami e

Convergence quality

*%%

k%%

*%%

* (stops too early)

*% or k%%

*% or *%%

*% or k%%

*% or *%%

*% or *%%




Training Sparse Models

 Most parameters are zero

* Apply strong 4 regularization

 As shown below, includes the sum of the absolute value of all
the weights in the loss function

Equation 4-10. Lasso regression cost function

J(0) = MSE(0) + 2a> ", |6;]



Learning Rate Scheduling



Learning Rate

* Using a schedule to adjust learning rate is best

Loss
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Schedules

 Power scheduling

* Drops gradually after each step
 Exponential scheduling

* Gradually drops by a factor of 10 every s steps
* Piecewise constant scheduling

* Constant learning rate for a number of epochs, then a different
rate for another number of epochs, etc.

 Performance scheduling

 Measure the validation error, reduce the learning rate when it
stops dropping



Schedules

* 1cycle scheduling

 |ntroduced in 2018

* Increases learning rate by a factor of 10 during first half of
training

 Then decreases it for the second half of training

e Converges much faster than other methods



Avoiding Overfitting Through Regularization



Regularization Techniques

« Early stopping

o { and {, regularization

® /, includes the sum of the absolute value of all the weights in the
loss function

 Ends up with a sparse model

® /, includes the sum of the squares of all the weights in the loss
function

e Good for SGD, momentum optimization, and Nesterov
momentum optimization

 Not good for Adam and its variants



Dropout Regularization

* A popular regularization technique for deep neural networks
* Provides 1%-2% accuracy boost
* At each training step, some neurons "drop out”
* They are ignored for this step
* Probability of dropout is p (typically 10% - 50%)

 Produces a more robust network that generalizes better



Dropout
Regularization

* |n practice, only apply
dropout to top one to
three layers

* Excluding the output
layer




Other Regularization Methods

« Monte Carlo (MC) Dropout
* Averages many models with different random dropouts
« Max-Norm Regularization

* Forces sum of all the squared weights to stay below a
maximum



Summary and Practical Guidelines



Most Deep Neural Networks

Table 11-3. Default DNN configuration

Hyperparameter

Kernel initializer

Activation function

Normalization

Regularization

Optimizer

Learning rate schedule

Default value

He initialization

ReLU if shallow; Swish if deep

None if shallow; batch norm if deep

Early stopping; weight decay if needed

Nesterov accelerated gradients or AdamW

Performance scheduling or 1cycle



A Simple Stack of Dense Layers

Table 11-4. DNN configuration for a self-normalizing net

Hyperparameter Default value

Kernel initializer LeCun initialization

Activation function SELU

Normalization None (self-normalization)
Regularization Alpha dropout if needed
Optimizer Nesterov accelerated gradients

Learning rate schedule Performance scheduling or 1cycle






