
Machine Learning
Security

8 Dimensionality
Reduction

Revised Oct 6, 2023

• The Curse of Dimensionality

• Main Approaches for Dimensionality Reduction

• PCA

• Random Projection

• LLE

• Other Techniques for Dimensionality Reduction

Topics

• On iPhone 15 models, the Main camera resolution is set to 24 MP
by default. You can switch between 12 MP, 24 MP, and 48 MP.

• So a single iPhone image has 24 million pixels, each with three
colors

• Consider the new Mercedes self-driving car

• A pair of lidar sensors ... a hump just above the rear window for
the GPS antenna array ... a front camera for 3D image capture,
long-range radar sensors up front that measure speed and
distance, ultrasonic sensors that detect the car’s surroundings,
a driver monitoring camera inside, and a road moisture
sensor ... A rear-facing camera keeps an eye out for flashing
lights from emergency vehicles, and internal microphones listen
for emergency sirens.

• https://www.theverge.com/2023/9/27/23892154/mercedes-benz-drive-pilot-autonomous-level-3-test

High Dimensionality

• How can you train or use a model with millions of features in the
input data?

• Do you really need all that data?

• Dimensionality reduction

• Discarding the unimportant data

• Keeping only the useful data

High Dimensionality

• Two main methods

• Projection

• Manifold learning

• Three popular techniques

• Principal Component Analysis (PCA)

• Random projection

• Locally Linear Embedding (LLE)

Dimensionality Reduction

The Curse of Dimensionality

• Consider a 1x1 square

• Most points are in the middle

• Not close to the edge

• How about a hypercube with many dimensions?

• Most of the points are near an edge

High-Dimensional Spaces

• You need enough data
to define the trend

• If you had only 2 or 3
points, you couldn't
make a good model

• The data can't be
too sparse

• If all the points were at
the left and right end
of X you couldn't
define the trend

• Points too near the
edge

Two Dimensions

import random
random.seed(999)
print("Dimensions \t Edge points out of 1000")
for dimensions in [2,3,10,30,100,300,1000,3000,10000]:
 edge_points = 0
 for p in range(1000):
 on_edge = 0
 for x in range(dimensions):
 if random.random() < 0.01:
 on_edge = 1
 edge_points += on_edge
 print(dimensions, "\t\t", edge_points)

Points Near an Edge

• Consider a 1x1 hypercube in d dimensions

• Its volume is 1d = 1

• How much of the volume is not near an edge?

• Range 0.01 through 0.99

• A hypercube 0.98 on a side

• Volume = 0.98d

Volume of a Hypercube

d Volune
2 0.9604000000
3 0.9411920000

100 0.1326195559
300 0.0023325057

1000 0.0000000017

import random, math

random.seed(999)
print("Dimensions \t Avg Distance Between Points")
for dimensions in [2, 3, 10, 100, 1_000, 10_000, 100_000, 1_000_000]:
 total_distance = 0
 for p in range(100):
 dist2 = 0
 for x in range(dimensions):
 dist2 += (random.random() - random.random())**2
 total_distance += math.sqrt(dist2)
 formatted_dimensions = "{:,}".format(dimensions)
 print(formatted_dimensions.rjust(9), "\t\t", "{:.2f}".format(total_distance/100.0))

Distance Between Points

• Consider a 1x1 hypercube in d
dimensions

• A typical distance between points in
one dimension should intuitively be
0.5

• How far apart are such points in 3
dimensions?

• sqrt(0.52 + 0.52 + 0.52) = 0.86

• How far apart are such points in n
dimensions?

• sqrt(0.52 x n)

Distance Between Points

d Distance
2 0.71
3 0.87

100 5.00
300 8.66

1000 15.81
10,000 50.00

100,000 158.11
1,000,000 500.00

x

x

• In high dimensions

• Points are far apart

• A new point will be an outlier, far from the others

• Predictions will be less reliable, since they are based on larger
extrapolations

• Overfitting is very likely

Sparse Data

• Consider 100 dimensional hypercube from 0 to 1

• Break it into hypercubes 0.1 on a side

• There are 10100 hypercubes

• You can never sample them all, or even close to it

Sample Size

Human Vision
• Brain structures filter

visual data

• Discarding the vast
majority of it

• Paying attention only
to the important data

Main Approaches for Dimensionality Reduction

• In most real-world
problems

• Samples are not
uniformly dispersed

• They fall close to a
lower-dimensional
subspace of the high-
dimensional space

• Here 3-D data lies
near a 2-D plane

• Project each
instance down to the
plane

Projection

• 3-D is reduced to 2-D

After Projection

• The subspace isn't flat

• Projecting it onto a
plane mixes the colors
together

Manifold Learning

• A 2-D manifold is
a 2-D shape that
can be bent and
twisted in 3-D
space

• Unroll the
manifold to get
the figure to the
right

Manifold Learning

• Instances are handwritten digits

• 28x28 pixels grayscale

• 784 dimensions

• But random pixels look very different

• The data has far less variation than
784 dimensions

MNIST Data

• Here, the decision boundary is simpler in 2-D than in 3-D

Decision Boundary

• Here, a decision boundary that is simple in 3-D becomes more
complex in 2-D

• Reducing dimensionality speeds up training

• But may not lead to a better or simpler solution

Decision Boundary

PCA

• By far, the most popular dimensionality reduction algorithm

• First, find the hyperplane that lies closest to the data

• Then project the data onto it

Principal Component Analysis 
(PCA)

• Use the plane that preserves the most variance

• Or, equivalently, minimize the mean squared distance from the
samples and the plane

Preserving Variance

• Use the plane C1 that
preserves the most variance

• Then find a second axis C2

• Orthogonal to the first one

• That captures most of the
remaining variance C1

Principal Components

• A standard matrix factorization technique

• Decomposes the training set matrix X

• Into the multiplication of three matrices

• One of them is V -- unit vectors that define the principal
components

Singular Value Decomposition

• The proportion of the dataset's variance that lies along each
principal component

• Choosing the Right Number of Dimensions

• Use enough dimensions to capture enough variance

• Such as 95%

• Or reduce to 2 or 3 dimensions just so you can visualize the data

Explained Variance Ratio

• The
explained
variance
stops
growing
fast at the
elbow

• A logical
place to
stop

Elbow in the Curve

• Treat the number of dimensions as a hyperparameter like any
other

• Perform a randomized search to find good values for all the
hyperparameters together

Hyperparameter Fitting

• Applying PCA to the MNIST dataset (784 dimensions)

• Captures 95% of the variance with 154 features

• This compresses the dataset to less than 20% of its original
size

• You can decompress the reduced dataset back to 784
dimensions

• Some information has been lost

• reconstruction error

PCA for Compression

• Uses a stochastic algorithm to quickly find an approximation of
the first d principal components

• Much faster

• Sci-kit automatically uses this method if the problem is too
large

Randomized PCA

• Useful if the training set is too large to fit into memory

• Splits the training set into mini-batches

• Feeds them in one at a time

Incremental PCA

Ch 8a

Random Projection

• Use a random linear projection to a lower-dimensional space

• Distances are very likely to be preserved

• Similar instances remain similar

• Different instances remain different

• No training required

• The data itself is not used at all to choose the projection axes

Random Projection

• For dataset containing m instances with n features

• And a tolerance for squared distance change of ε

• Project the data down to d dimensions

• With 5,000 instances, 20,000 features, and 10% tolerance

• d is 7,300 dimensions

Random Projection

• Uses a random sparse matrix

• Most cells are zero

• Uses much less memory

Sparse Random Projection

LLE

• A nonlinear dimensionality reduction (NLDR) technique

• Compates each training instance to its nearest neighbors

• Looks for a low-dimensional representation that preserves those
local relationships

• Good for unrolling twisted manifolds

• Especially if there's not too much noise

Locally Linear Embedding (LLE)

• The 3-D rolled data on the left becomes the 2-D data on the right

• Long-range distances are not preserved

• So the rectangle gets stretched and twisted

Locally Linear Embedding (LLE)

Other Dimensionality Reduction Techniques

• Multidimensional scaling (MDS)

• Reduces dimensionality while preserving distance between the
instances

• Random projection does that, but only works well for high-
dimensional data

• Isomap

• Creates a graph connecting each instance to its nearest
neighbors

• Reduces dimensionality while trying to preserve the geodesic
distances between the instances

• The number of nodes on the shortest path between nodes

MDS and Isomap

• t-distributed stochastic neighbor enbedding (t-SNE)

• Reduces dimensionality while trying to keep similar instances
close and dissimilar instances apart

• Mostly used for visualization

• Linear discriminant analysis (LDA)

• Linear classification algorithm

• Learns the most discriminative axes between the classes

• Those axes define a hyperplane upon which to project the data

• This projection will keep the classes as far apart as possible

t-SNE and LDA

Ch 8b

