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• Random Projection 

• LLE 

• Other Techniques for Dimensionality Reduction

Topics



• On iPhone 15 models, the Main camera resolution is set to 24 MP 
by default. You can switch between 12 MP, 24 MP, and 48 MP.


• So a single iPhone image has 24 million pixels, each with three 
colors


• Consider the new Mercedes self-driving car


• A pair of lidar sensors ... a hump just above the rear window for 
the GPS antenna array ... a front camera for 3D image capture, 
long-range radar sensors up front that measure speed and 
distance, ultrasonic sensors that detect the car’s surroundings, 
a driver monitoring camera inside, and a road moisture 
sensor ... A rear-facing camera keeps an eye out for flashing 
lights from emergency vehicles, and internal microphones listen 
for emergency sirens. 


• https://www.theverge.com/2023/9/27/23892154/mercedes-benz-drive-pilot-autonomous-level-3-test

High Dimensionality



• How can you train or use a model with millions of features in the 
input data?


• Do you really need all that data?


• Dimensionality reduction 

• Discarding the unimportant data


• Keeping only the useful data

High Dimensionality



• Two main methods


• Projection 

• Manifold learning 

• Three popular techniques


• Principal Component Analysis (PCA) 

• Random projection 

• Locally Linear Embedding (LLE)

Dimensionality Reduction



The Curse of Dimensionality



• Consider a 1x1 square


• Most points are in the middle


• Not close to the edge


• How about a hypercube with many dimensions?


• Most of the points are near an edge 

High-Dimensional Spaces



• You need enough data 
to define the trend


• If you had only 2 or 3 
points, you couldn't 
make a good model


• The data can't be 
too sparse 

• If all the points were at 
the left and right end 
of X you couldn't 
define the trend


• Points too near the 
edge

Two Dimensions



import random
random.seed(999)
print("Dimensions \t Edge points out of 1000")
for dimensions in [2,3,10,30,100,300,1000,3000,10000]:
  edge_points = 0
  for p in range(1000):
    on_edge = 0
    for x in range(dimensions):
      if random.random() < 0.01:
        on_edge = 1
    edge_points += on_edge
  print(dimensions, "\t\t", edge_points)

Points Near an Edge



• Consider a 1x1 hypercube in d dimensions


• Its volume is 1d = 1


• How much of the volume is not near an edge?


• Range 0.01 through 0.99


• A hypercube 0.98 on a side


• Volume = 0.98d

Volume of a Hypercube

d Volune
2 0.9604000000
3 0.9411920000

100 0.1326195559
300 0.0023325057

1000 0.0000000017



import random, math

random.seed(999)
print("Dimensions \t Avg Distance Between Points")
for dimensions in [2, 3, 10, 100, 1_000, 10_000, 100_000, 1_000_000]:
  total_distance = 0
  for p in range(100):
    dist2 = 0
    for x in range(dimensions):
      dist2 += (random.random() - random.random())**2
    total_distance +=  math.sqrt(dist2)
  formatted_dimensions = "{:,}".format(dimensions)
  print(formatted_dimensions.rjust(9), "\t\t", "{:.2f}".format(total_distance/100.0))

Distance Between Points



• Consider a 1x1 hypercube in d 
dimensions


• A typical distance between points in 
one dimension should intuitively be 
0.5


• How far apart are such points in 3 
dimensions?


• sqrt( 0.52 + 0.52 + 0.52 ) = 0.86 


• How far apart are such points in n 
dimensions?


• sqrt( 0.52 x n )

Distance Between Points

d Distance
2 0.71
3 0.87

100 5.00
300 8.66

1000 15.81
10,000 50.00

100,000 158.11
1,000,000 500.00

x

x



• In high dimensions


• Points are far apart


• A new point will be an outlier, far from the others


• Predictions will be less reliable, since they are based on larger 
extrapolations


• Overfitting is very likely

Sparse Data



• Consider 100 dimensional hypercube from 0 to 1


• Break it into hypercubes 0.1 on a side


• There are 10100 hypercubes


• You can never sample them all, or even close to it

Sample Size



Human Vision
• Brain structures filter 

visual data


• Discarding the vast 
majority of it


• Paying attention only 
to the important data



Main Approaches for Dimensionality Reduction



• In most real-world 
problems


• Samples are not 
uniformly dispersed


• They fall close to a 
lower-dimensional 
subspace of the high-
dimensional space


• Here 3-D data lies 
near a 2-D plane


• Project each 
instance down to the 
plane

Projection



• 3-D is reduced to 2-D

After Projection



• The subspace isn't flat


• Projecting it onto a 
plane mixes the colors 
together

Manifold Learning



• A 2-D manifold is 
a 2-D shape that  
can be bent and 
twisted in 3-D 
space


• Unroll the 
manifold to get 
the figure to the 
right

Manifold Learning



• Instances are handwritten digits


• 28x28 pixels grayscale


• 784 dimensions


• But random pixels look very different


• The data has far less variation than 
784 dimensions

MNIST Data



• Here, the decision boundary is simpler in 2-D than in 3-D

Decision Boundary



• Here, a decision boundary that is simple in 3-D becomes more 
complex in 2-D


• Reducing dimensionality speeds up training


• But may not lead to a better or simpler solution

Decision Boundary



PCA



• By far, the most popular dimensionality reduction algorithm


• First, find the hyperplane that lies closest to the data


• Then project the data onto it

Principal Component Analysis 
(PCA)



• Use the plane that preserves the most variance


• Or, equivalently, minimize the mean squared distance from the 
samples and the plane

Preserving Variance



• Use the plane C1 that 
preserves the most variance 


• Then find a second axis C2 

• Orthogonal to the first one


• That captures most of the 
remaining variance C1

Principal Components



• A standard matrix factorization technique


• Decomposes the training set matrix X 

• Into the multiplication of three matrices


• One of them is V -- unit vectors that define the principal 
components

Singular Value Decomposition



• The proportion of the dataset's variance that lies along each 
principal component


• Choosing the Right Number of Dimensions


• Use enough dimensions to capture enough variance


• Such as 95%


• Or reduce to 2 or 3 dimensions just so you can visualize the data

Explained Variance Ratio



• The 
explained 
variance 
stops 
growing 
fast at the 
elbow


• A logical 
place to 
stop

Elbow in the Curve



• Treat the number of dimensions as a hyperparameter like any 
other


• Perform a randomized search to find good values for all the 
hyperparameters together

Hyperparameter Fitting



• Applying PCA to the MNIST dataset (784 dimensions)


• Captures 95% of the variance with 154 features


• This compresses the dataset to less than 20% of its original 
size


• You can decompress the reduced dataset back to 784 
dimensions


• Some information has been lost


• reconstruction error

PCA for Compression





• Uses a stochastic algorithm to quickly find an approximation of 
the first d principal components


• Much faster


• Sci-kit automatically uses this method if the problem is too 
large

Randomized PCA



• Useful if the training set is too large to fit into memory


• Splits the training set into mini-batches


• Feeds them in one at a time

Incremental PCA
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Random Projection



• Use a random linear projection to a lower-dimensional space


• Distances are very likely to be preserved


• Similar instances remain similar


• Different instances remain different


• No training required


• The data itself is not used at all to choose the projection axes

Random Projection



• For dataset containing m instances with n features


• And a tolerance for squared distance change of ε 

• Project the data down to d dimensions


• With 5,000 instances, 20,000 features, and 10% tolerance


• d is 7,300 dimensions

Random Projection



• Uses a random sparse matrix


• Most cells are zero


• Uses much less memory

Sparse Random Projection



LLE



• A nonlinear dimensionality reduction (NLDR) technique


• Compates each training instance to its nearest neighbors


• Looks for a low-dimensional representation that preserves those 
local relationships


• Good for unrolling twisted manifolds


• Especially if there's not too much noise

Locally Linear Embedding (LLE)



• The 3-D rolled data on the left becomes the 2-D data on the right


• Long-range distances are not preserved


• So the rectangle gets stretched and twisted

Locally Linear Embedding (LLE)



Other Dimensionality Reduction Techniques



• Multidimensional scaling (MDS)


• Reduces dimensionality while preserving distance between the 
instances


• Random projection does that, but only works well for high-
dimensional data


• Isomap


• Creates a graph connecting each instance to its nearest 
neighbors


• Reduces dimensionality while trying to preserve the geodesic 
distances between the instances


• The number of nodes on the shortest path between nodes

MDS and Isomap



• t-distributed stochastic neighbor enbedding (t-SNE)


• Reduces dimensionality while trying to keep similar instances 
close and dissimilar instances apart


• Mostly used for visualization


• Linear discriminant analysis (LDA)


• Linear classification algorithm


• Learns the most discriminative axes between the classes


• Those axes define a hyperplane upon which to project the data


• This projection will keep the classes as far apart as possible

t-SNE and LDA
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