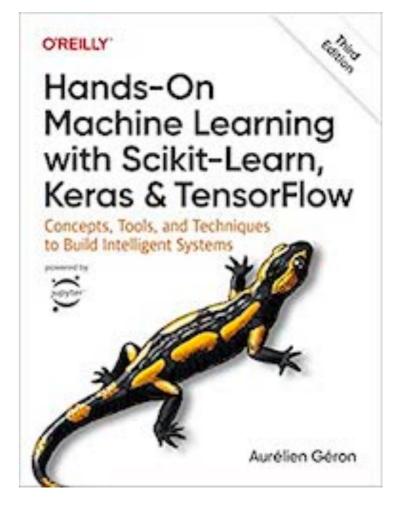
Machine Learning Security

8 Dimensionality Reduction



Revised Oct 6, 2023

Topics

- The Curse of Dimensionality
- Main Approaches for Dimensionality Reduction
- PCA
- Random Projection
- LLE
- Other Techniques for Dimensionality Reduction

High Dimensionality

- On iPhone 15 models, the Main camera resolution is set to 24 MP by default. You can switch between 12 MP, 24 MP, and 48 MP.
- So a single iPhone image has 24 million pixels, each with three colors
- Consider the new Mercedes self-driving car
 - A pair of lidar sensors ... a hump just above the rear window for the GPS antenna array ... a front camera for 3D image capture, long-range radar sensors up front that measure speed and distance, ultrasonic sensors that detect the car's surroundings, a driver monitoring camera inside, and a road moisture sensor ... A rear-facing camera keeps an eye out for flashing lights from emergency vehicles, and internal microphones listen for emergency sirens.

• https://www.theverge.com/2023/9/27/23892154/mercedes-benz-drive-pilot-autonomous-level-3-test

High Dimensionality

- How can you train or use a model with millions of features in the input data?
- Do you really need all that data?
- Dimensionality reduction
 - Discarding the unimportant data
 - Keeping only the useful data

Dimensionality Reduction

- Two main methods
 - Projection
 - Manifold learning
- Three popular techniques
 - Principal Component Analysis (PCA)
 - Random projection
 - Locally Linear Embedding (LLE)

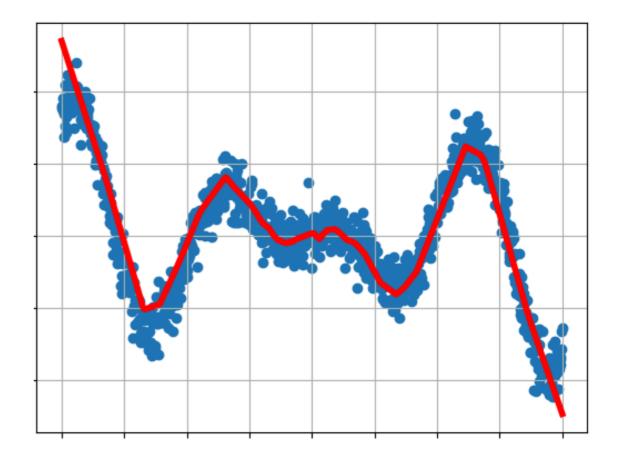
The Curse of Dimensionality

High-Dimensional Spaces

- Consider a 1x1 square
 - Most points are in the middle
 - Not close to the edge
- How about a hypercube with many dimensions?
 - Most of the points are near an edge

Two Dimensions

- You need enough data to define the trend
- If you had only 2 or 3 points, you couldn't make a good model
 - The data can't be too sparse
- If all the points were at the left and right end of X you couldn't define the trend
 - Points too near the edge



Points Near an Edge

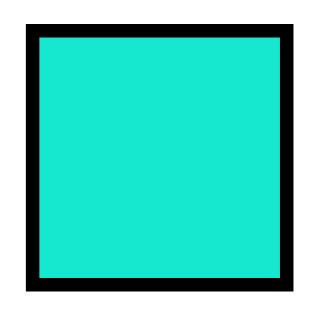
```
import random
random.seed(999)
print("Dimensions \t Edge points out of 1000")
for dimensions in [2,3,10,30,100,300,1000,3000,10000]:
    edge_points = 0
    for p in range(1000):
        on_edge = 0
        for x in range(dimensions):
            if random.random() < 0.01:
                on_edge = 1
        edge_points += on_edge
        print(dimensions, "\t\t", edge points)
```

Dimensions	Edge points out of 1000
2	25
3	29
10	102
30	250
100	621
300	956
1000	1000
3000	1000
10000	1000

Volume of a Hypercube

- Consider a 1x1 hypercube in *d* dimensions
- Its volume is $1^d = 1$
- How much of the volume is not near an edge?
 - Range 0.01 through 0.99
 - A hypercube 0.98 on a side
 - Volume = 0.98^d

d	Volune
2	0.9604000000
3	0.9411920000
100	0.1326195559
300	0.0023325057
1000	0.000000017



Distance Between Points

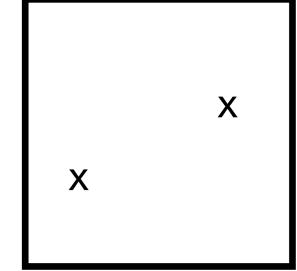
import random, math

```
random.seed(999)
print("Dimensions \t Avg Distance Between Points")
for dimensions in [2, 3, 10, 100, 1_000, 10_000, 1_000_000]:
   total_distance = 0
   for p in range(100):
     dist2 = 0
     for x in range(dimensions):
        dist2 += (random.random() - random.random())**2
        total_distance += math.sqrt(dist2)
   formatted_dimensions = "{:,}".format(dimensions)
     print(formatted_dimensions.rjust(9), "\t\t", "{:.2f}".format(total_distance/100.0))
```

Dimensions 2	Avg Distance Between Points 0.57
3	0.69
10	1.21
100	4.06
1,000	12.92
10,000	40.86
100,000	129.09
1,000,000	408.26

Distance Between Points

- Consider a 1x1 hypercube in *d* dimensions
- A typical distance between points in one dimension should intuitively be 0.5
- How far apart are such points in 3 dimensions?
 - sqrt($0.5^2 + 0.5^2 + 0.5^2$) = 0.86
- How far apart are such points in *n* dimensions?
 - sqrt(0.5² x *n*)



d	Distance
2	0.71
3	0.87
100	5.00
300	8.66
1000	15.81
10,000	50.00
100,000	158.11
1,000,000	500.00

Sparse Data

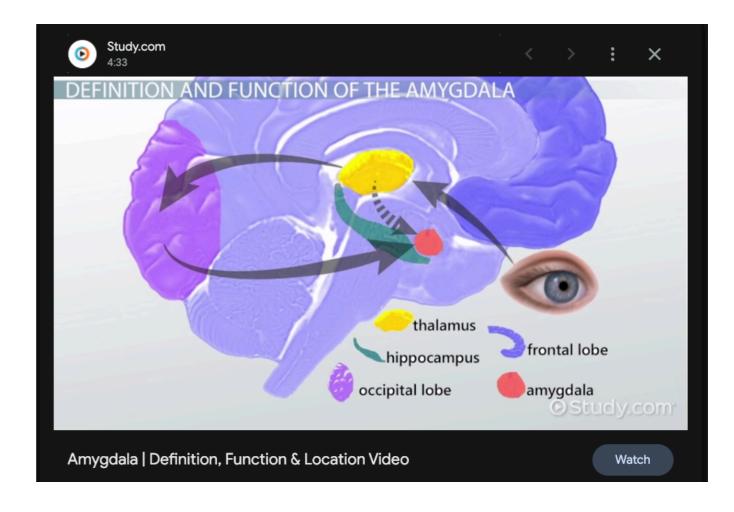
- In high dimensions
 - Points are far apart
 - A new point will be an outlier, far from the others
 - Predictions will be less reliable, since they are based on larger extrapolations
- Overfitting is very likely

Sample Size

- Consider 100 dimensional hypercube from 0 to 1
- Break it into hypercubes 0.1 on a side
- There are 10¹⁰⁰ hypercubes
- You can never sample them all, or even close to it

Human Vision

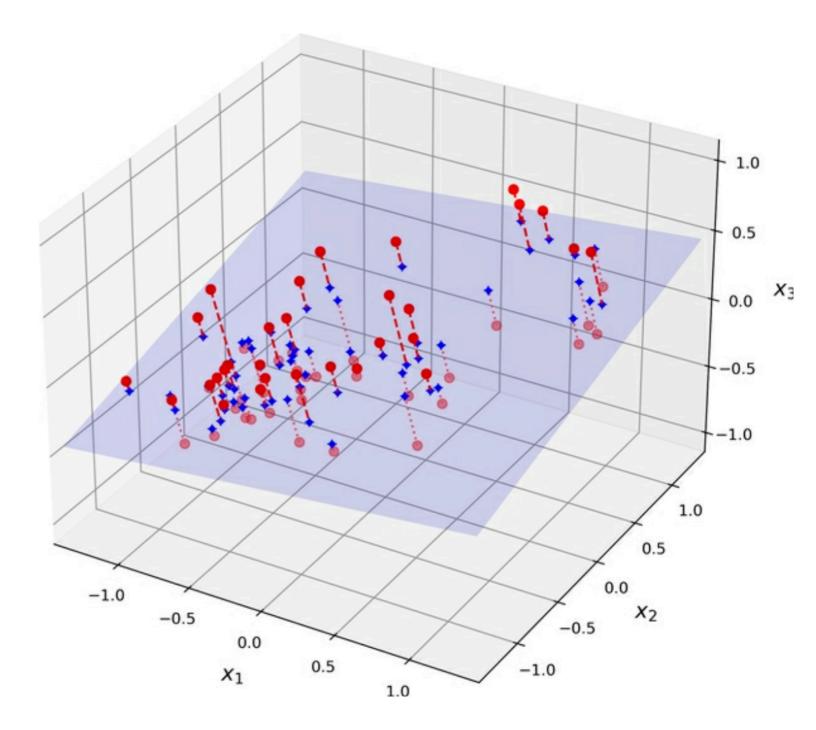
- Brain structures filter visual data
- Discarding the vast majority of it
- Paying attention only to the important data



Main Approaches for Dimensionality Reduction

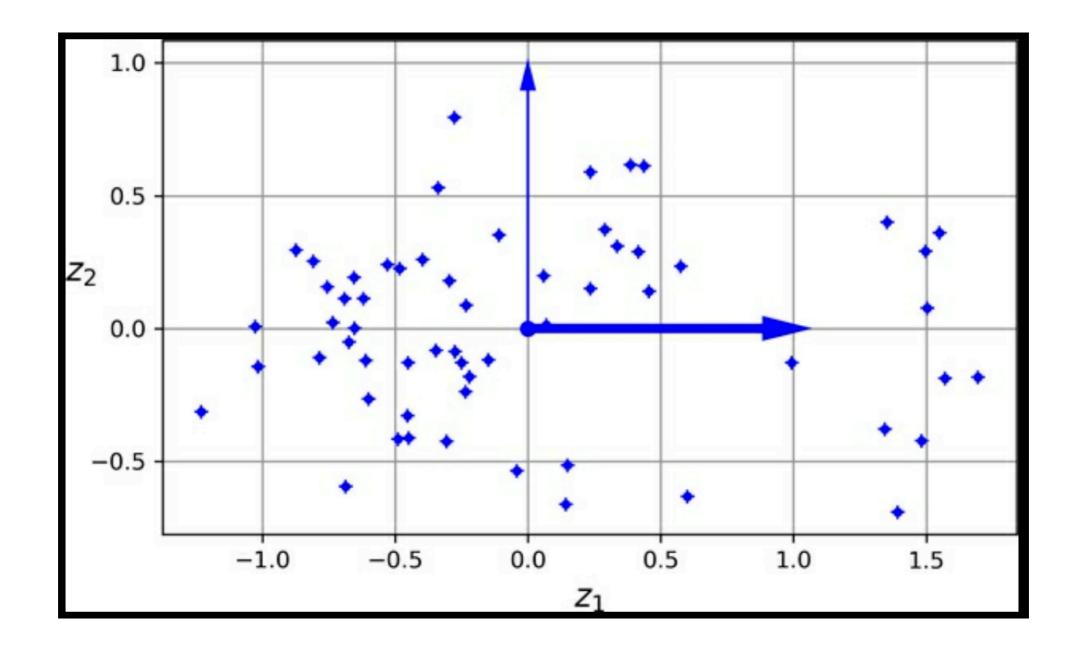
Projection

- In most real-world problems
- Samples are not uniformly dispersed
- They fall close to a lower-dimensional subspace of the highdimensional space
- Here 3-D data lies near a 2-D plane
- Project each instance down to the plane



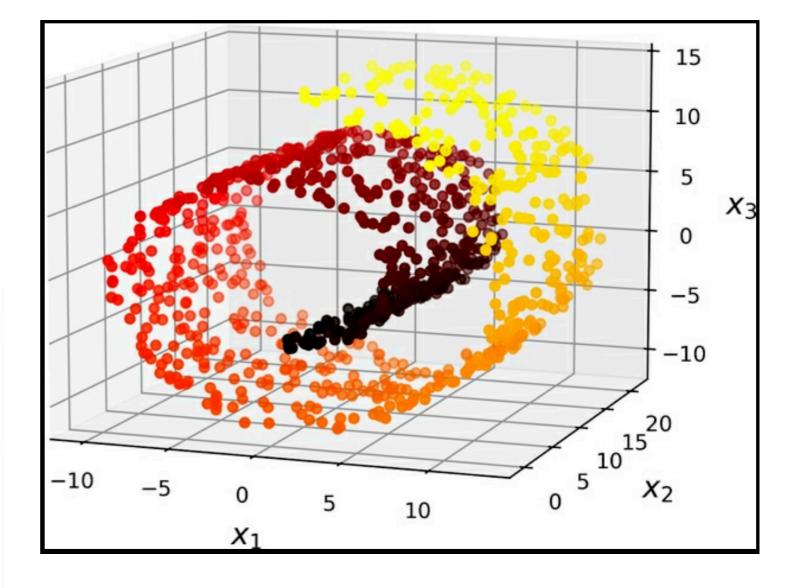
After Projection

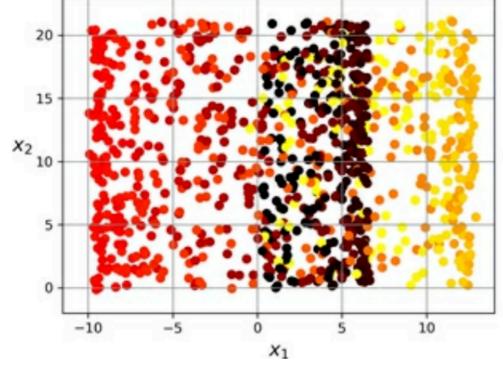
• 3-D is reduced to 2-D



Manifold Learning

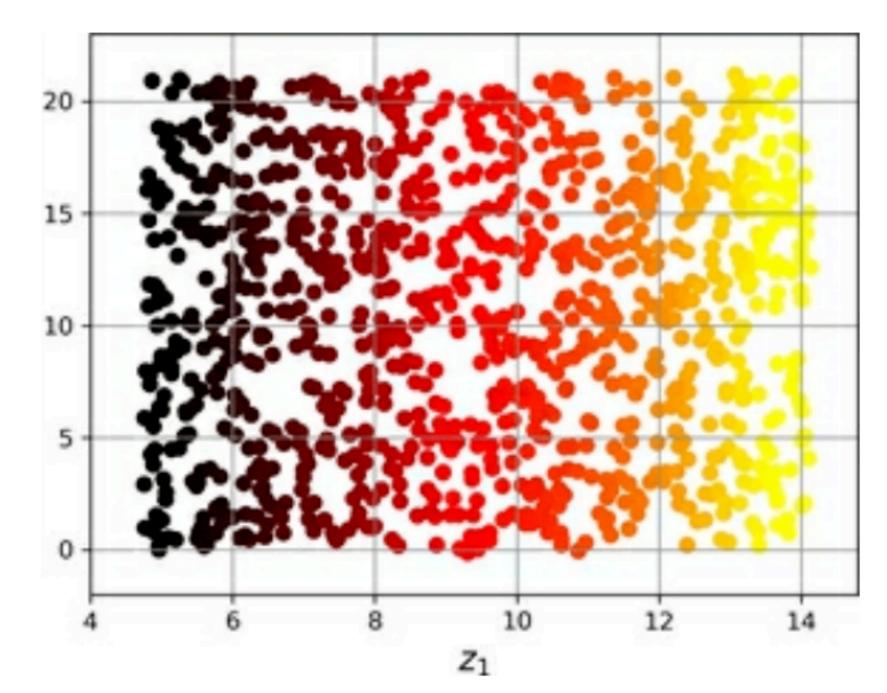
- The subspace isn't flat
- Projecting it onto a plane mixes the colors together





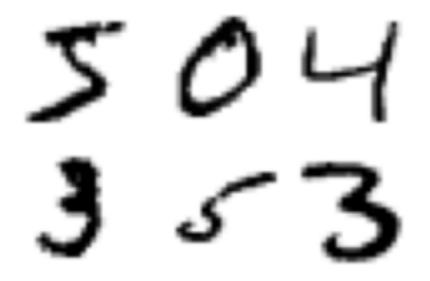
Manifold Learning

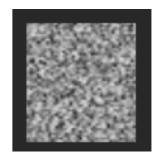
- A 2-D manifold is a 2-D shape that can be bent and twisted in 3-D space
- Unroll the manifold to get the figure to the right



MNIST Data

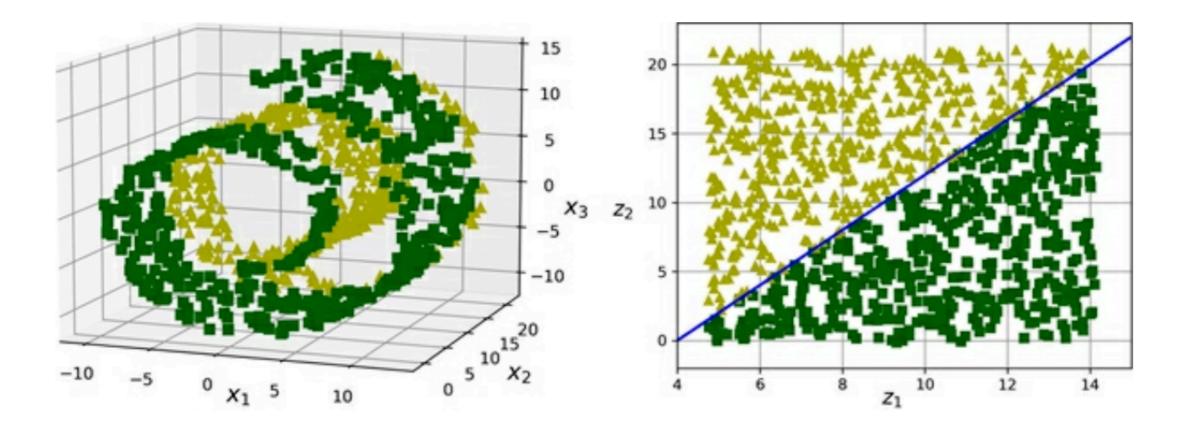
- Instances are handwritten digits
 - 28x28 pixels grayscale
 - 784 dimensions
- But random pixels look very different
- The data has far less variation than 784 dimensions





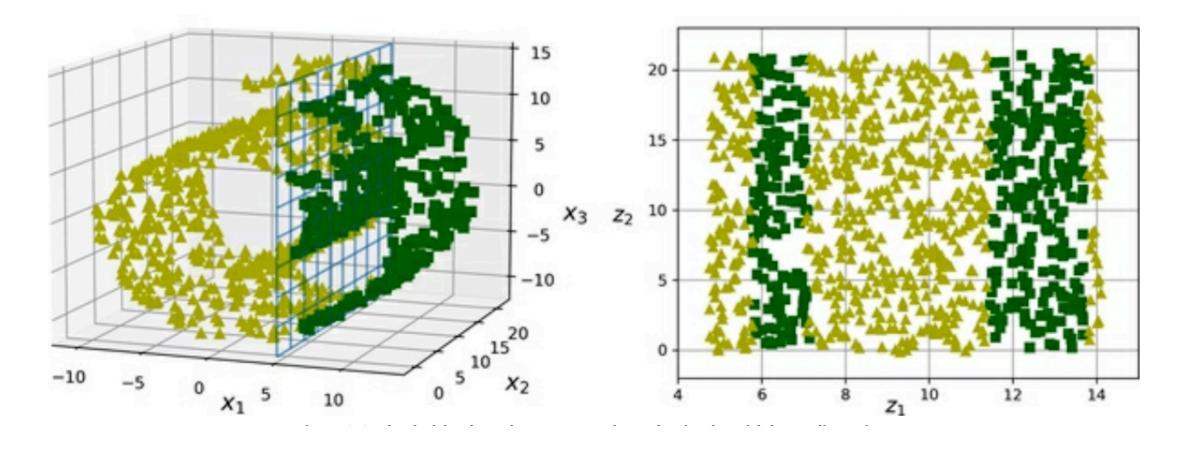
Decision Boundary

• Here, the decision boundary is simpler in 2-D than in 3-D



Decision Boundary

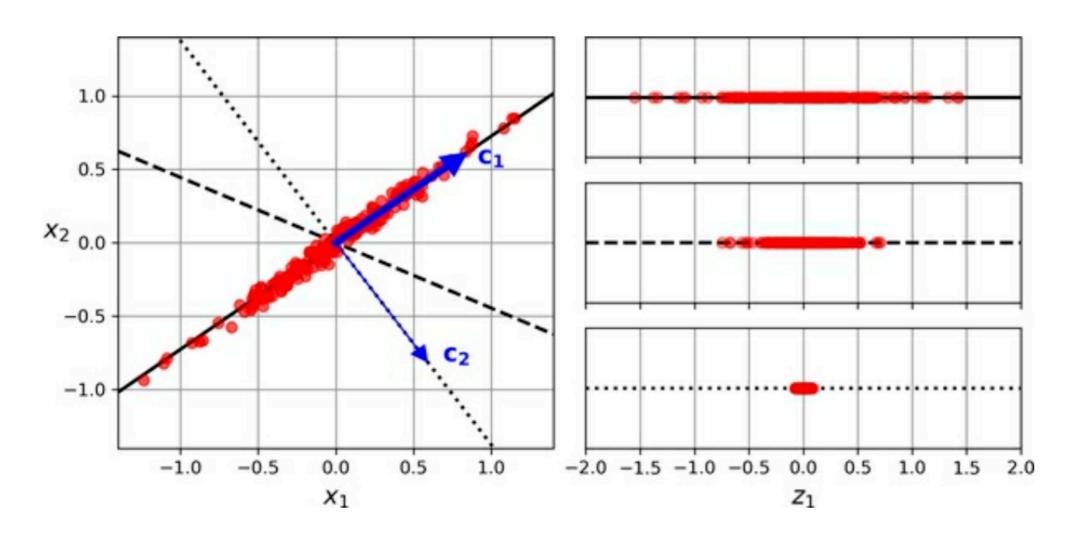
- Here, a decision boundary that is simple in 3-D becomes more complex in 2-D
- Reducing dimensionality speeds up training
 - But may not lead to a better or simpler solution



PCA

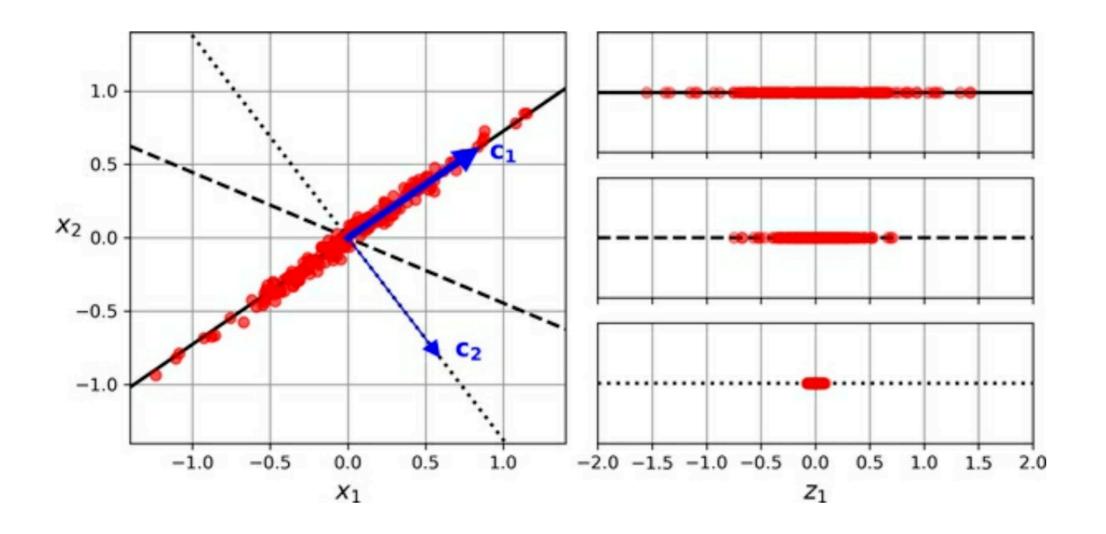
Principal Component Analysis (PCA)

- By far, the most popular dimensionality reduction algorithm
- First, find the hyperplane that lies closest to the data
- Then project the data onto it



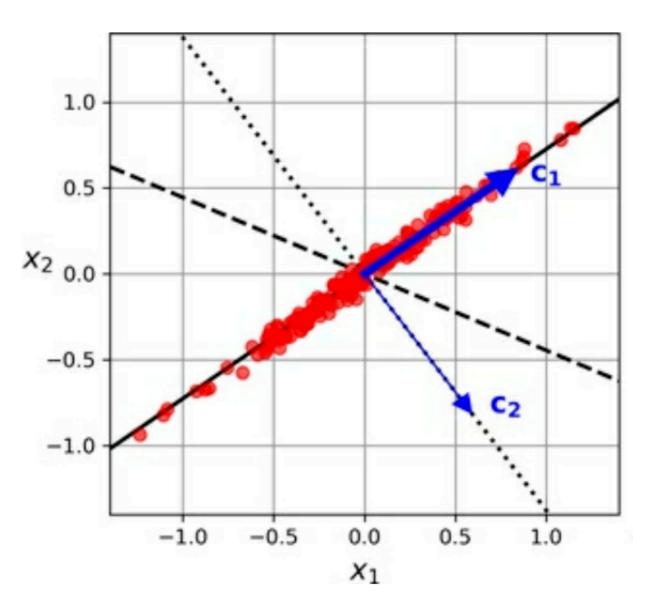
Preserving Variance

- Use the plane that preserves the most variance
- Or, equivalently, minimize the mean squared distance from the samples and the plane



Principal Components

- Use the plane C₁ that preserves the most variance
- Then find a second axis \boldsymbol{C}_2
 - Orthogonal to the first one
 - That captures most of the remaining variance C₁



Singular Value Decomposition

- A standard matrix factorization technique
- Decomposes the training set matrix X
 - Into the multiplication of three matrices
 - One of them is V -- unit vectors that define the principal components

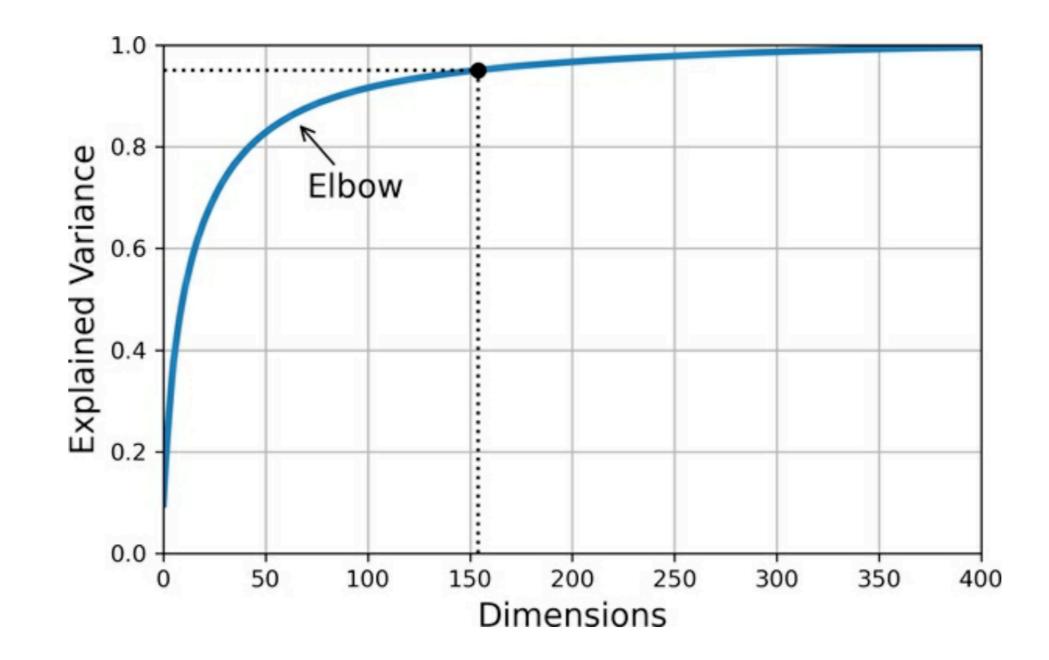
$$\mathbf{V} = \begin{pmatrix} | & | & | \\ \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_n \\ | & | & | \end{pmatrix}$$

Explained Variance Ratio

- The proportion of the dataset's variance that lies along each principal component
- Choosing the Right Number of Dimensions
 - Use enough dimensions to capture enough variance
 - Such as 95%
- Or reduce to 2 or 3 dimensions just so you can visualize the data

Elbow in the Curve

- The explained variance stops growing fast at the elbow
- A logical place to stop



Hyperparameter Fitting

- Treat the number of dimensions as a hyperparameter like any other
- Perform a randomized search to find good values for all the hyperparameters together

PCA for Compression

- Applying PCA to the MNIST dataset (784 dimensions)
 - Captures 95% of the variance with 154 features
 - This compresses the dataset to less than 20% of its original size
- You can decompress the reduced dataset back to 784 dimensions
 - Some information has been lost
 - reconstruction error

Original Compressed 43 57

Randomized PCA

- Uses a stochastic algorithm to quickly find an approximation of the first *d* principal components
 - Much faster
 - Sci-kit automatically uses this method if the problem is too large

Incremental PCA

- Useful if the training set is too large to fit into memory
- Splits the training set into mini-batches
 - Feeds them in one at a time

Ch 8a

Random Projection

Random Projection

- Use a random linear projection to a lower-dimensional space
- Distances are very likely to be preserved
 - Similar instances remain similar
 - Different instances remain different
- No training required
- The data itself is not used at all to choose the projection axes

Random Projection

- For dataset containing *m* instances with *n* features
- And a tolerance for squared distance change of $\boldsymbol{\varepsilon}$
- Project the data down to **d** dimensions

d ≥ 4 log(m) / (½ ε² - ⅓ ε³)

- With 5,000 instances, 20,000 features, and 10% tolerance
 - *d* is 7,300 dimensions

Sparse Random Projection

- Uses a random sparse matrix
 - Most cells are zero
 - Uses much less memory

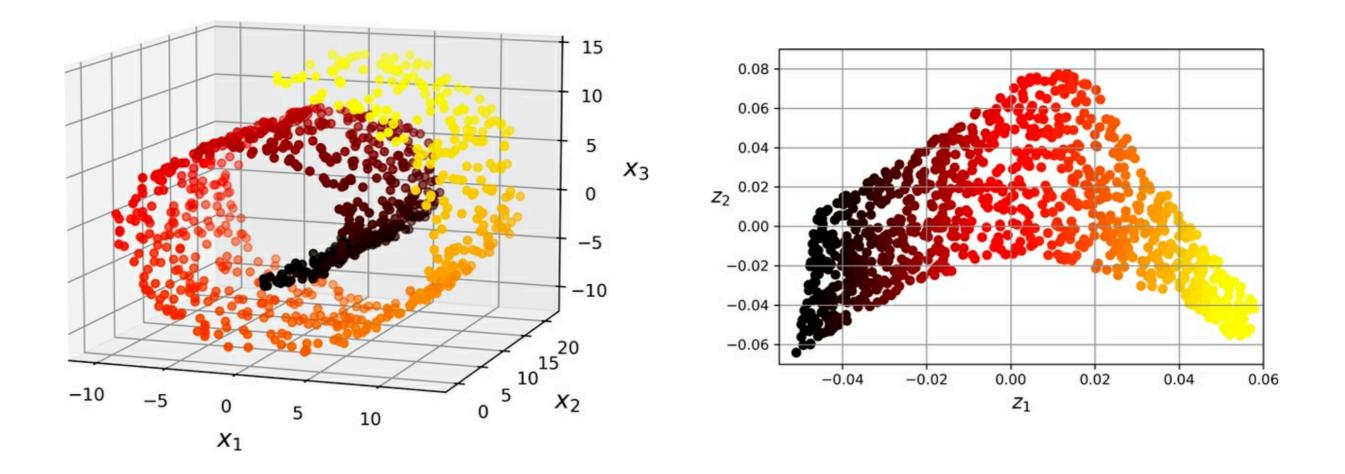
LLE

Locally Linear Embedding (LLE)

- A nonlinear dimensionality reduction (NLDR) technique
- Compates each training instance to its nearest neighbors
- Looks for a low-dimensional representation that preserves those local relationships
- Good for unrolling twisted manifolds
 - Especially if there's not too much noise

Locally Linear Embedding (LLE)

- The 3-D rolled data on the left becomes the 2-D data on the right
- Long-range distances are not preserved
 - So the rectangle gets stretched and twisted



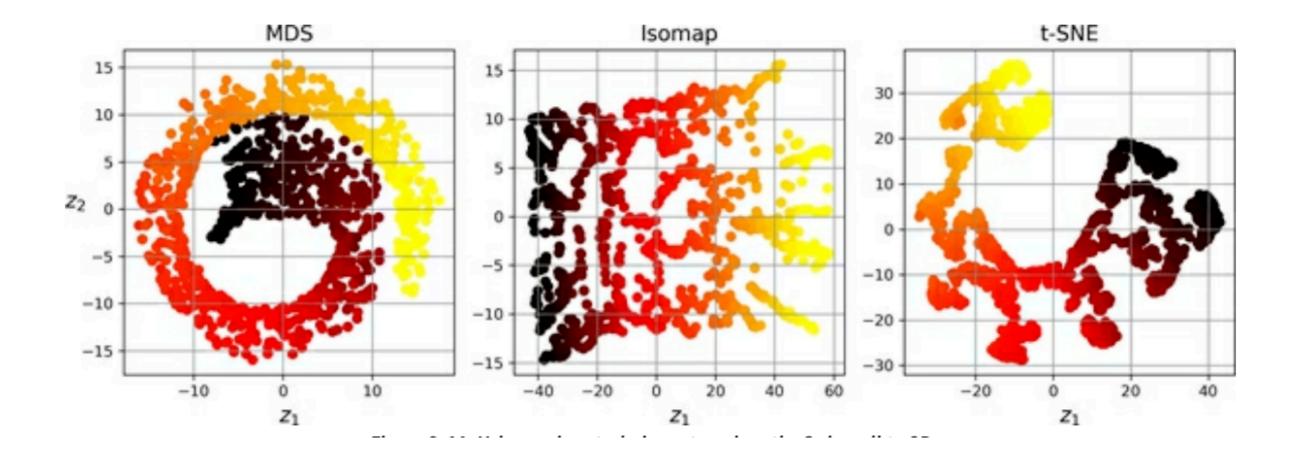
Other Dimensionality Reduction Techniques

MDS and Isomap

- *Multidimensional scaling* (MDS)
 - Reduces dimensionality while preserving distance between the instances
 - Random projection does that, but only works well for highdimensional data
- Isomap
 - Creates a graph connecting each instance to its nearest neighbors
 - Reduces dimensionality while trying to preserve the *geodesic distances* between the instances
 - The number of nodes on the shortest path between nodes

t-SNE and LDA

- t-distributed stochastic neighbor enbedding (t-SNE)
 - Reduces dimensionality while trying to keep similar instances close and dissimilar instances apart
 - Mostly used for visualization
- Linear discriminant analysis (LDA)
 - Linear classification algorithm
 - Learns the most discriminative axes between the classes
 - Those axes define a hyperplane upon which to project the data
 - This projection will keep the classes as far apart as possible



Ch 8b