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• Most data is unlabeled


• Labeling usually requires human workers


• Unsupervised learning tasks:


• Dimensionality reduction


• Clustering


• Anomaly detection


• Density estimation


• Determining the probability density function of the data

Unsupervised Learning



• Clustering Algorithms: k-Means and DBSCAN 

• Gaussian Mixtures

Topics



Clustering Algorithms: k-Means and DBSCAN



• Classification on the left


• Requires labels


• Clustering on the right


• Can make two clusters, not three, from this data

Classification v. Clustering



• Customer segmentation


• Grouping customers into clusters


• Adapt products, marketing, and recommendations to them


• Data analysis


• Group data into clusters, analyze clusters separately


• Dimensionality reduction


• Find k clusters


• Measure each instance's affinity with each cluster


• Replace instance with its cluster affinities


• This is k-dimensional

Clustering Use Cases



• Feature engineering


• Cluster affinities may be useful as extra features


• Anomaly detection


• Instances with low affinity to all clusters are anomalies


• Semi-supervised learning


• Some data is labeled


• Form clusters and propagate labels to all instances in the 
same cluster

Clustering Use Cases



• Search engines


• Search for images similar to a reference image


• Cluster images, return the matching cluster


• Image segmentation


• Cluster pixels by color

Clustering Use Cases



k-Means



• Proposed by Bell Labs in 1957


• This data has five Gaussian blobs

k-Means



• Minimizes distances to the centroids


• Converges to a good solution when the blobs all have the same size


• Note errors near the top left decision boundary

k-Means Decision Boundaries



• Hard clustering


• Assign each instance to a single cluster


• Soft clustering


• Give each instance a score per cluster


• Such as distance to the centroid

Hard v Soft Clustering



• Original data was two-dimensional (x1, x2)


• Replace with 5-dimensional data, with distance from each 
instance to the centroids


• If original data has high 
dimensionality, this is 
a method of 
dimensionality 
reduction

Dimensionality Reduction



1. Starts by randomly placing the centroids


2. Label the instances by finding the nearest centroid


3. Updates the centroids to the center of the instances in that class


4. Loop back to step 2 for the next iteration

k-Means Algorithm



Scores 
are sum of 
squared 
distances 
from 
centroids, 
negated


The positive 
score is 
called 
inertia



• Bad luck with initial centroids


• It tries n_init different starting locations (default 10)

Suboptimal Solutions



• If the data has clusters,


• Linear in


• Number of instances m  

• Number of clusters k  

• Number of dimensions n 


• But if the data lacks a clustered structure, the model can fail to 
converge and increase in complexity exponentially


• This rarely happens; in practice, k-Means is one of the fastest 
clustering algorithms

Computational Complexity



Random Data 
Part 1

import numpy as np

import matplotlib.pyplot as plt

import random

from sklearn.cluster import KMeans

import time


def plot_data(X):

    plt.plot(X[:, 0], X[:, 1], 'k.', markersize=2)


def plot_centroids(centroids, weights=None, circle_color='w', cross_color='k'):

    if weights is not None:

        centroids = centroids[weights > weights.max() / 10]

    plt.scatter(centroids[:, 0], centroids[:, 1],

                marker='o', s=35, linewidths=8,

                color=circle_color, zorder=10, alpha=0.9)

    plt.scatter(centroids[:, 0], centroids[:, 1],

                marker='x', s=2, linewidths=12,

                color=cross_color, zorder=11, alpha=1)


def plot_decision_boundaries(clusterer, X, resolution=1000, show_centroids=True,

                             show_xlabels=True, show_ylabels=True):

    mins = X.min(axis=0) - 0.1

    maxs = X.max(axis=0) + 0.1

    xx, yy = np.meshgrid(np.linspace(mins[0], maxs[0], resolution),

                         np.linspace(mins[1], maxs[1], resolution))

    Z = clusterer.predict(np.c_[xx.ravel(), yy.ravel()])

    Z = Z.reshape(xx.shape)


    plt.contourf(Z, extent=(mins[0], maxs[0], mins[1], maxs[1]),

                cmap="Pastel2")

    plt.contour(Z, extent=(mins[0], maxs[0], mins[1], maxs[1]),

                linewidths=1, colors='k')

    plot_data(X)

    if show_centroids:

        plot_centroids(clusterer.cluster_centers_)


    if show_xlabels:

        plt.xlabel("$x_1$")

    else:

        plt.tick_params(labelbottom=False)

    if show_ylabels:

        plt.ylabel("$x_2$", rotation=0)

    else:

        plt.tick_params(labelleft=False)




for n in [100, 1_000, 10_000]:    # Number of data points


  # Make random data

  X = np.zeros(shape=(n,2))

  for i in range(n):

    X[i] = [random.uniform(0,3), random.uniform(0,3)]


  # Fit 5-way k-Means

  time_start = time.time()

  k = 5

  kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)

  y_pred = kmeans.fit_predict(X)

  time_elapsed = time.time() - time_start


  print()

  print(f"n: {n:,}: ", n, "Score: ", "{:.2f}".format(kmeans.score(X)), "Time: ", "{:.2f}".format(time_elapsed))

  plt.figure(figsize=(4, 2))

  plot_decision_boundaries(kmeans, X)

  plt.show()


Random Data 
Part 2





• An improvement proposed in 2006


• Chooses better starting centroids that are more distant from 
each other


• Much less likely to converge to a suboptimal solution


• The default method for the k-Means class we're using

k-Means++



• On large datasets with many clusters


• The calculation can be accelerated


• Using the triangle inequality to estimate distances using upper 
and lower bounds


• Doesn't always work, can make training slower

Accelerated and Mini-Batch k-Means



• Use only part of the data for each iteration


• Move centroids just slightly each time


• Speeds up algorithm


• Allows use of huge datasets

Mini-Batch k-Means



• More clusters means lower inertia


• Even if it's overfitting the data

Choosing k



• Mean silhouette coefficient over all the instances


• (b - a) / max(a, b)


• a is the mean distance to other instances in the same cluster


• b is the mean distance to the instances in the next-closest 
cluster


• Varies from -1 to 1


• +1 if an instance is well inside its own cluster and far from 
other clusters


• -1 if an instance is assigned to the wrong cluster

Silhouette Score



• 4 is the best choice


• 5 is the second-best

Results for 5-Cluster Data



• Poor behavior when the clusters have


• varying sizes,


• different densities, or


• nonspherical shapes


• Gaussian mixtures are better for these elliptical clusters

Limits of k-Means



• Color segmentation 

• Pixels with similar colors are assigned to the same segment


• Useful for finding forest area in a landscape


• Semantic segmentation 

• Pixels that are part of the same object are assigned to the same 
segment


• All pedestrians get sorted to the pedestrian segment


• Instance segmentation 

• Pixels that are part of the same individual; are assigned to the 
same segment


• Each pedestrian is a different segment

Using Clusters for Image 
Segmentation



Color Segmentation with k-Means 



• Many unlabeled instances, and a few labeled instances


• This dataset has 1,797 images with labels

Using Clustering for  
Semi-Supervised Learning



• Fit using all images and labels


• Over 90% accuracy

Fitting a Model



• Only about 75% accurate

Fitting a Model to 50 Instances 



• Find representative images nearest to the centroids


• These are better images to use for training


• Label them by hand

Using a k-Means Model to form 50 Clusters 



• Accuracy increases to about 85%

Training from Representative Images



• In each of the 50 clusters


• Accuracy increases to 89%

Propagating Labels to All Instances



• Remove the 1% of images furthest from centroids


• Accuracy increases to over 90%

Removing Outliers



• Train on all data with labels	 	 91% 


• Train on first 50 images	 	 75%


• Train on 50 representative images	 85%


• Propagate labels to all images	 89%


• Remove outliers	 	 	 91%

Summary



• A human expert interacts with the learning algorithm


• Uncertainty sampling 

• The model is trained on the instances labeled so far


• Makes predictions on the unlabeled instances


• Instances are given to the expert for labeling, those


• With the most uncertainty, or


• That would result in the largest model change, or


• That different models disagree on


• Iterate this process until the performance improvement stops 
being worth the labeling effort

Active Learning
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DBSCAN



• Density-Based Spatial Clustering of Applications with Noise


• Clusters are continuous regions of high density


• For each instance, count how many instances are near it


• Distance <Ɛ (Ɛ-neightorhood)

• If an instance has at least min_samples in its Ɛ-neightorhood

• It's a core instance -- located in a dense region

• All instances in the neighborhood of a core instance belong to 
the same cluster

• An instance that is not a core instance and doesn't have one in 
its neighborhood is an anomaly

DBSCAN



• If Ɛ is too small, clusters are broken up, on the left below

• On the right, a correct value of Ɛ

DBSCAN



• Agglomerative clustering 

• Connects clusters together with each iteration like bubbles


• BIRCH 

• Balanced Iterative Reducing and Clustering using Hierarchies


• Designed for very large datasets


• Can be faster than batch k-Means as long as there are less 
than 20 features


• During training, builds a tree structure with just enough 
information to assign new instances to clusters

Other Clustering Algorithms



• Mean-shift 

• Starts with a circle centered on each instance


• Shifts the circle to center on the mean of clusters inside


• Iterates until the circles stop moving


• Combines close circles to form clusters


• Can find clusters of any shape


• Only one hyperparameter: bandwidth (the circle size)

Other Clustering Algorithms



• Affinity propagation 

• Instances exchange messages and elect exemplars


• Each exemplar and the instances that selected it are the 
clusters


• Can find clusters of different sizes


• Complexity of order m2 so not good for large datasets

Other Clustering Algorithms



• Spectral clustering 

• Makes a similarity matrix between clusters


• Reduces dimensionality 


• Uses another clustering algorithm like k-means in this low 
dimensional space


• Does not scale well to large numbers of instances


• Does not handle different cluster sizes well

Other Clustering Algorithms



Gaussian Mixtures



• Assume 
instances are 
a group of 
Gaussian 
distributions


• Input the 
number of 
clusters


• Estimate 
Gaussian 
parameters

Gaussian Mixtures
from sklearn.datasets import make_blobs
import numpy as np
import matplotlib.pyplot as plt

X1, y1 = make_blobs(n_samples=1000, centers=((4, -4), (0, 0)), random_state=42)
X1 = X1.dot(np.array([[0.374, 0.95], [0.732, 0.598]]))
X2, y2 = make_blobs(n_samples=250, centers=1, random_state=42)
X2 = X2 + [6, -8]
X = np.r_[X1, X2]
y = np.r_[y1, y2]

plt.scatter(X[:, 0], X[:, 1], s=3)
plt.show()



• Initialize cluster parameters randomly


• Assign instances to clusters (expectation)


• Update clusters (maximization)


• A generalization of k-means


• Allowing various cluster size, shape, and orientation


• Like k-means, it can converge to poor solutions


• Repeat n_init times (default 1, set to 10)

Expectation-Maximization (EM)



• Fits this simple data well

Gaussian Mixture Model



• covariance_type hyperparameter


• "spherical"  

• but can have different sizes 

• "diag"  

• can be ellipsoids but axes must be aligned with coordinate 
axes 

• "tied" 

• all ellipsoids must have the same shape, size, and orientation


• "full" 

• no constraints

Limiting Shapes



Constrained Models



• An instance in a low-density region is an anomaly


• Choose  a threshold


• Ex: 2% of products are defective

Anomaly Detection



• Minimize Theoretical Information Criterion such as


• Bayesian Information Criterion (BIC) 

• Akaike Information Criterion (AIC)

Selecting the Number of Clusters



• Both measures are minimized for k=3

BIC and AIC



• Set n_components to a large value, more than the number of 
clusters you expect


• Algorithm will eliminate unnecessary clusters automatically


• Works for the simple 3 Gaussian cluster data


• Not so well for moons

Bayesian Gaussian Mixture Models



• Fast-MCD (Minimum Covariance Determinant) 

• Useful for outlier detection, to clean up a dataset


• Assumes that inliners are from a single Gaussian distribution


• Classified the others as outliers

Other Algorithms



• Isolation Forest 

• Efficient for outlier detection, especially in high-dimensional 
datasets


• Builds a random forest, randomly picking features and 
thresholds at each node


• Dataset gets chopped into pieces until each instance is alone


• Anomalies get isolated in fewer steps


• Local Outlier Factor (LOF) 

• Compares density of instances around a given instance to the 
density around its neighbors


• Anomalies are more isolated than the neighbors

Other Algorithms



• One-class SVM 

• Suited for novelty detection


• Maps instances to a high-dimensional space


• Uses a linear SVM classifier to separate the instances from the 
origin


• Corresponds to finding a small region that encompasses all the 
instances in the original space


• A new instance that is outside that region is an anomaly


• PCA and other dimensionality reduction techniques 

• Reconstruction error is larger for anomalies

Other Algorithms
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