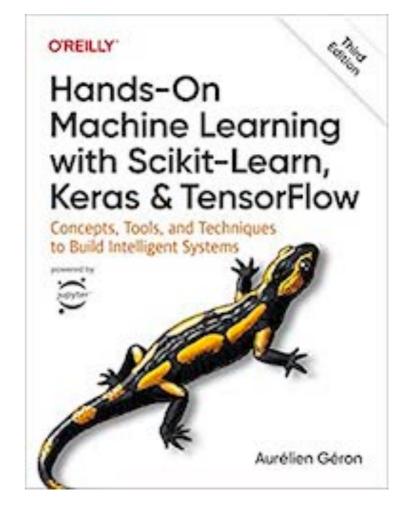
Machine Learning Security

2 End-to-End Machine Learning Project



Made Aug 22, 2023

Steps in an ML Project

- 1 Look at the big picture
- 2 Get the data
- 3 Explore and visualize the data to gain insights
- 4 Prepare the data for machine learning algorithms
- 5 Select a model and train it
- 6 Fine-tune your model
- 7 Present your solution
- 8 Launch, monitor, and maintain your system

Getting Real Data

- Popular open data repositories:
 - OpenML.org
 - Kaggle.com
 - PapersWithCode.com
 - UC Irvine Machine Learning Repository
 - <u>Amazon's AWS datasets</u>
 - TensorFlow datasets
- Meta portals (they list open data repositories):
 - DataPortals.org
 - <u>OpenDataMonitor.eu</u>
- Other pages listing many popular open data repositories:
 - <u>Wikipedia's list of machine learning datasets</u>
 - <u>Quora.com</u>
 - The datasets subreddit

1 Look At The Big Picture

Frame the Problem

- The goal is to predict the median housing price from the other metrics in the data, such as number of bedrooms, location, and income in the area.
- The prediction will be used to make investment decisions.
- See the data pipeline below

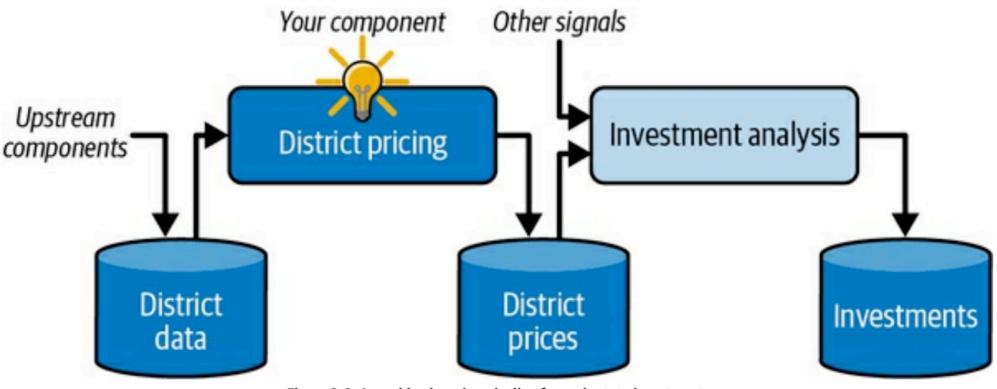


Figure 2-2. A machine learning pipeline for real estate investments

System Design

- Supervised learning
 - Data is labeled
- Regression
 - Model will predict a value
- Batch learning
 - No additional data will be added later

Types of Regression

- Multiple regression
 - Uses multiple features to predict a value
- Univariate regression
 - Predicts a single value
- Multivariate regression
 - Predicts multiple values

Select a Performance Measure

- Root Mean Square Error (RMSE)
 - Adds up the error for each item of data
 - The most commonly used measure for regression tasks

$$ext{RMSE}\left(\mathbf{X},h
ight) = \sqrt{rac{1}{m}\sum_{i=1}^{m}\left(h\left(\mathbf{x}^{\left(i
ight)}
ight) - y^{\left(i
ight)}
ight)^2}$$

• Also called the **Euclidean norm**, or ℓ_2

Select a Performance Measure

- Mean Absolute Error (MAE)
 - Preferred if data has many outliers
 - Also called **Manhattan norm**, or ℓ_1

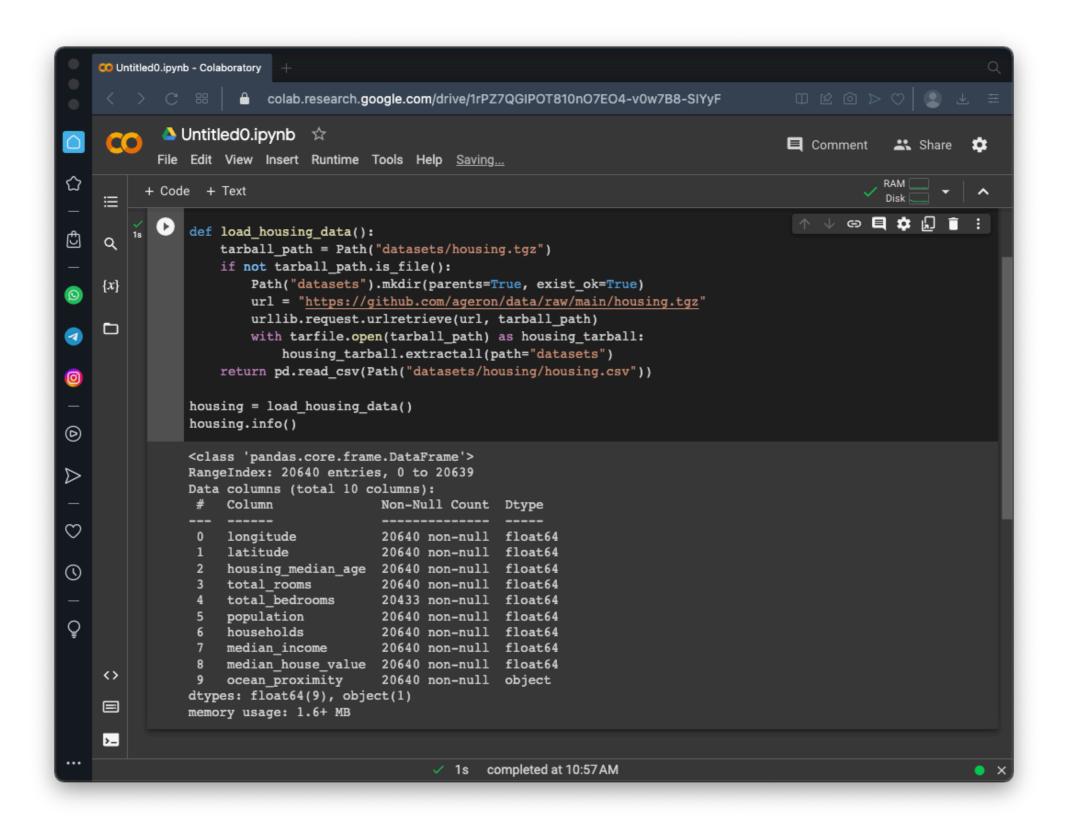
$$ext{MAE}\left(\mathbf{X},h
ight) = rac{1}{m}\sum_{i=1}^{m}\left|h\left(\mathbf{x}^{\left(i
ight)}
ight) - y^{\left(i
ight)}
ight|$$

Check the Assumptions

- We're assuming the price will be used as a numerical value
- If the next stage just uses categories, like "cheap", "medium", or "expensive" we should be using classification instead of regression

2 Get The Data

Load Data from Github



head() Shows First Five Rows

•	😋 Un	titlec	d0.ipyr	nb - C	olaboratory +						م
	<		С	88	🔒 colab.	.research.google.co	m/drive/1rPZ7Q	GIPOT810nO7E	04-v0w7B8-SIYyF	· 🗆 🖄 🗘	> ♡ ♀ ± ≢
	C	0	🝐 File		itled0.ipynb t View Insert	☆ Runtime Tools H	lelp <u>All change</u>	es saved		🔳 Comment	🚉 Share 🏾 🏟
습	≣	+	- Coc	le ·	+ Text					~	RAM 🔜 👻 👗 🤸
_ ©	۹	v Os	D	hou	ising.head()					$\wedge \downarrow $	🗏 🌣 🖵 🧯 :
_	{ <i>x</i> }		C⇒	ge	total_rooms	total_bedrooms	population	_	median_income	median_house_value	ocean_proximity
Ø	1~5			1.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
a				1.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY
a				2.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR BAY
0				2.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR BAY
_ ©				2.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR BAY
0											

value_counts()

ocean_proximity is not numeric

	🚥 Ur	ntitle	d0.ipyn	b - Colaboratory	+				
	<		С	88 🗎 🔒	colab	.research.	google.	com/dr	ive/1rPZ7QGIPOT81
	C	0		UntitledO.ip Edit View	•		Tools	Help	<u>All changes saved</u>
습	≣	-	+ Cod	le + Text					
	=								
Ů	۹	✓ 0s	D	housing["o	ocean	_proximi	ty"].va	alue_c	counts()
				<1H OCEAN		9136			
Ø	{ <i>x</i> }			INLAND NEAR OCEAN	-	6551 2658			
a	Đ			NEAR BAY ISLAND Name: ocea		2290 5 oximity,	dtype	: int6	54

describe() Shows Statistics

		titler	d0 invn	b - Colabor	ratory +						Q
•	<	>	C			arch google con	n/drive/1rPZ7QGIPOT810	n07F04-v0w7B	8-SIYVE	0 ፼ ⊘	
						aren.google.com			o on yr		
	C	0	File		d O.ipynb ☆ iew Insert Run	time Tools H	elp All changes saved		E	Comment	🚢 Share 🏾 🏩
습		File Edit View Insert Runtime Tools Help <u>All changes saved</u> + Code + Text									
_										- D	
٢	ά	V Os	D	housin	g.describe()					^ ↓ ⊕ ⊑	🌣 🖵 🔋 :
-	{ x }				longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	
	[**]			count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640.000000	20640.000000
	D			mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425.476744	499.539680
				std	2.003532	2.135952	12.585558	2181.615252	421.385070	1132.462122	382.329753
				min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.000000
				25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	787.000000	280.000000
Ø				50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1166.000000	409.000000
\triangleright				75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	1725.000000	605.000000
- ~				max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682.000000	6082.000000

Histograms

• Show distribution of numerical attributes

Median Income

- It's not in dollars
- It's been scaled and capped at 15 max and 0.5 min
- Numbers represent roughly tens of thousands of dollars
- Preprocessed attributes are common in ML, this should be OK

Other Capped Values

- Housing median age and median house value were capped
- Median house value is our target, which we want to predict
- It being capped limits the value of our model
- If we want to predict beyond \$500,000, there are two options:
 - Collect proper labels for the capped districts
 - Remove those districts from the training and test sets

Scale and Skewing

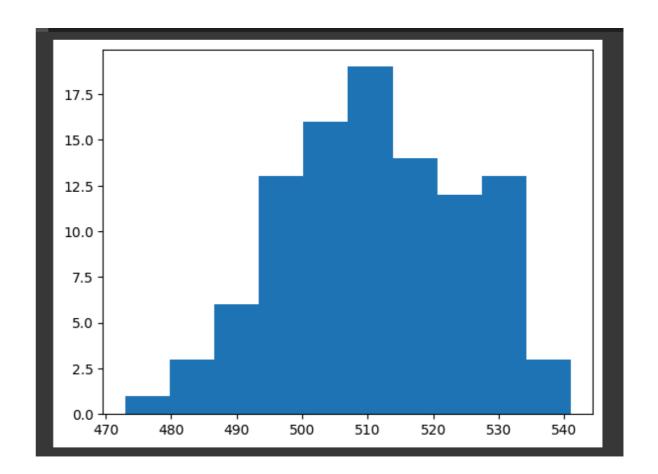
- These attributes have very different scales
 - We'll fix them with feature scaling
- Many histograms are **skewed right**
 - They extend more to the right than the left
 - We'll transform them to fix that

Test Sets

- Take 20% of the data and set it aside
- There are two ways to choose the test set
 - Randomly
 - Stratified sampling

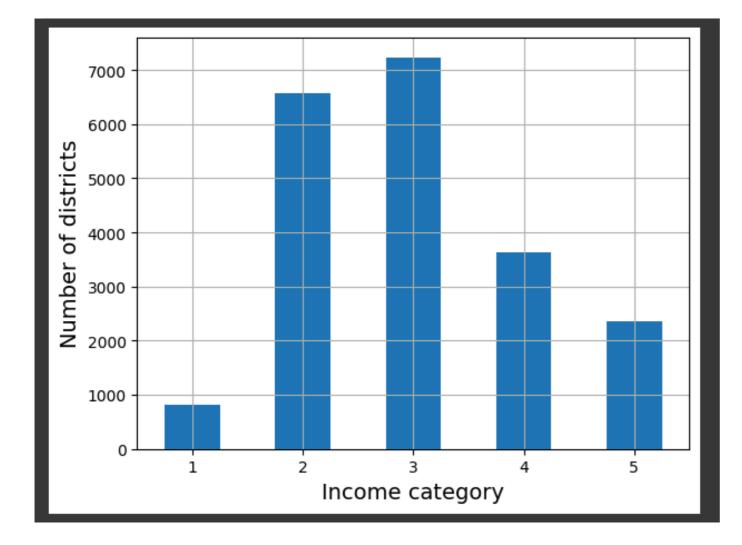
Random Sampling

- Fine for large data sets
- But may introduce sampling bias
- Consider a sample from a population that is 51% female
- A random sample
 - Might contain only 48%
 - or 54% females



Stratified Sampling

- Take the important feature and gather it into categories
- Then sample the correct number from each category
- Training and test sets match now



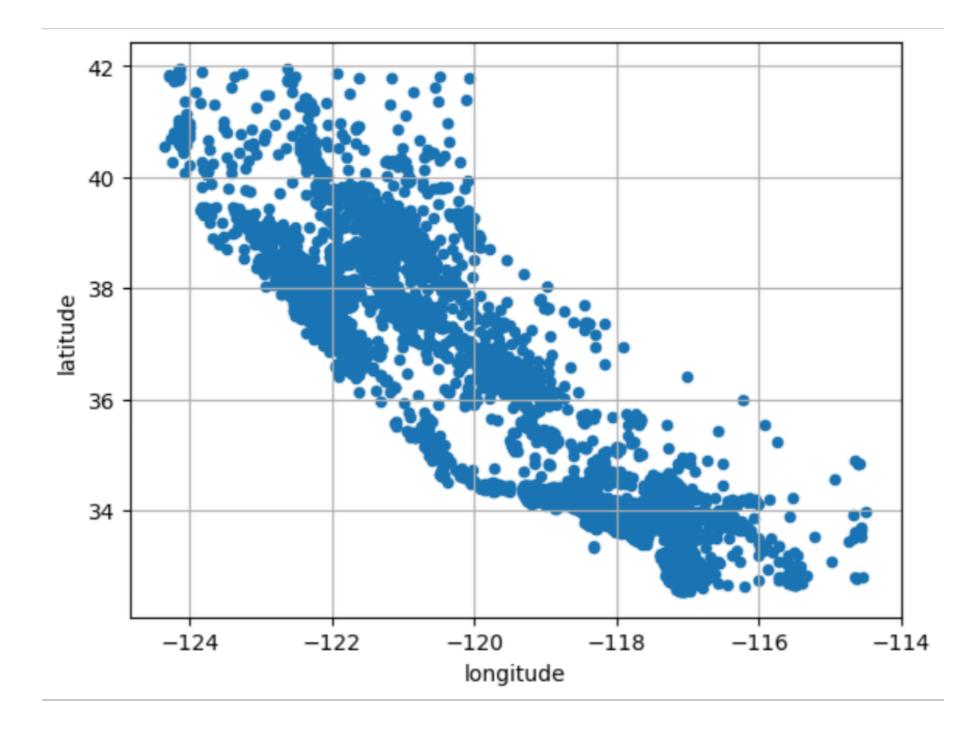
₽	Train 3 2	ning set: 0.350594 0.318859
	4	0.176296
	5	0.114462
	1	0.039789
	Name	: income_cat,
	Test	set:
	3	0.350533
	2	0.318798
	4	0.176357
	5	0.114341
	1	0.039971

Ch 2a

3 Explore And Visualize The Data To Gain Insights

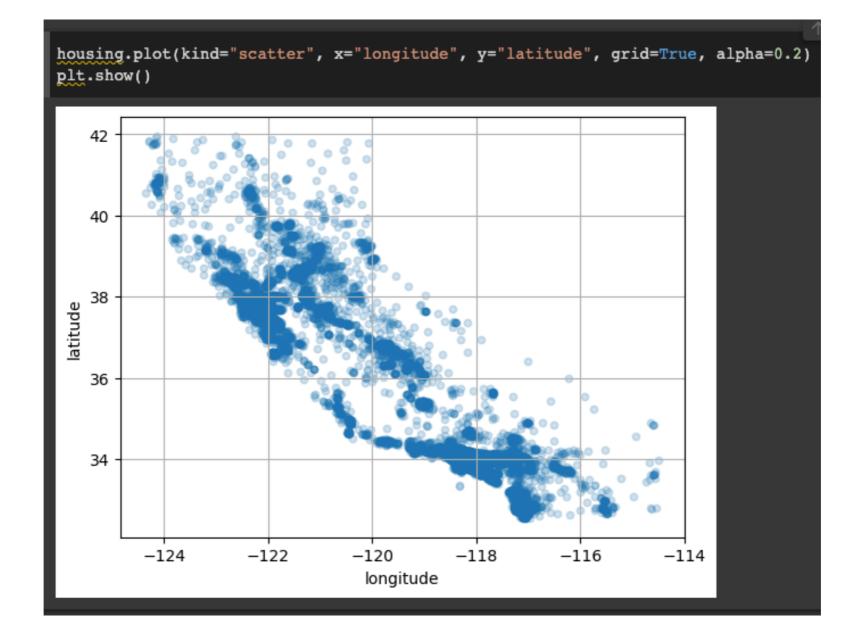
Visualizing Geographical Data

• Scatterplot misses detail as dots cover other dots



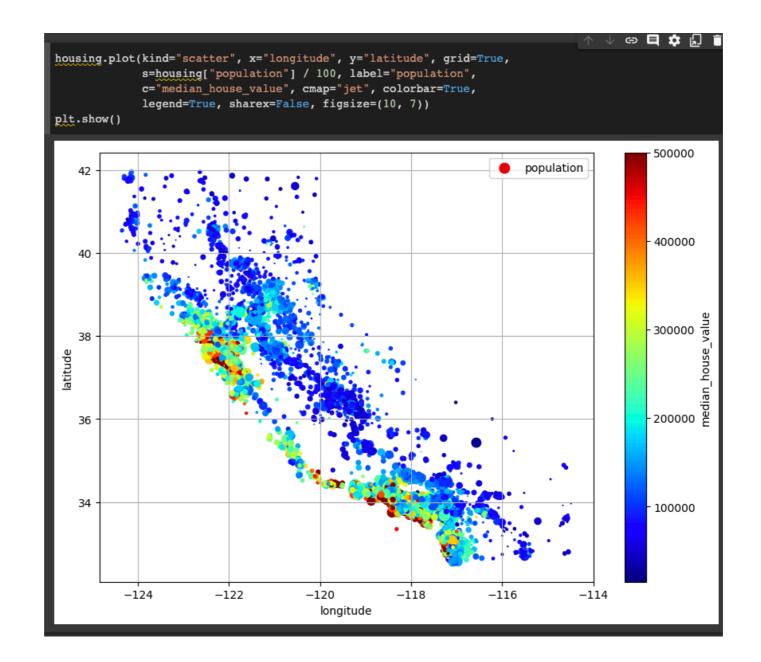
Transparency

• Alpha = 0.2 shows more detail in high-density areas



Add Price with Color

 Areas near the ocean and with higher population density have higher prices



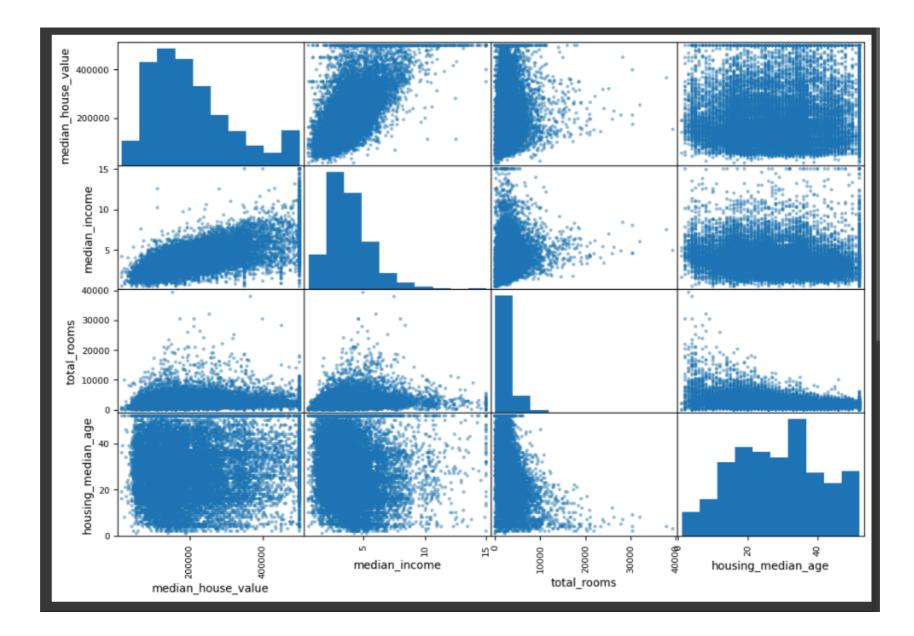
Correlations

- Strongest correlations with median_house_value:
 - median_income, total_rooms, housing_median_age, latitude

<pre>corr_matrix = housin corr_matrix["median_</pre>	g.corr() house_value"].sort_values(ascending=False)
<ipython-input-24-51 corr_matrix = hous</ipython-input-24-51 	a0e6bf2eb4>:1: FutureWarning: The default val ing.corr()
median_house_value	1.000000
median_income	0.688380
total_rooms	0.137455
housing_median_age	0.102175
households	0.071426
total_bedrooms	0.054635
population	-0.020153
longitude	-0.050859
latitude	-0.139584

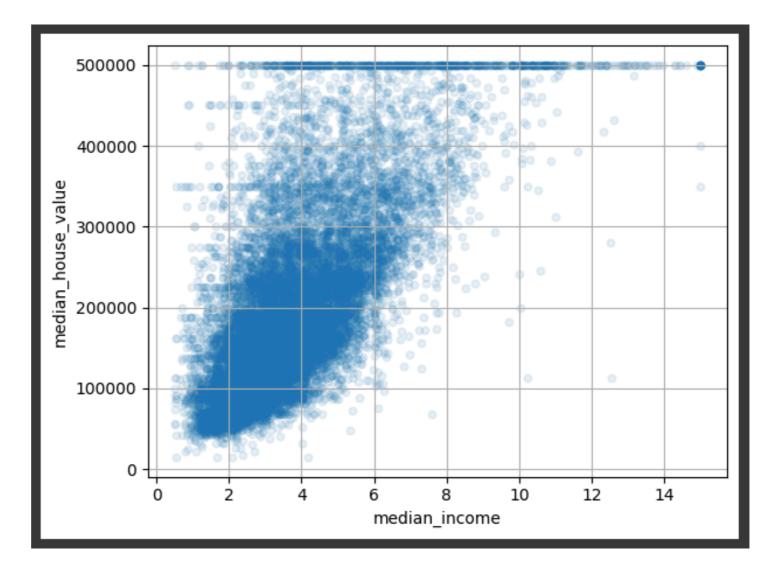
Scatter Matrix

• Strongest relationship is median_income



median_income

- Correlation is strong
- Clusters of points at \$500,000. \$450,000. and \$350,000



Correlation Assumes a Line

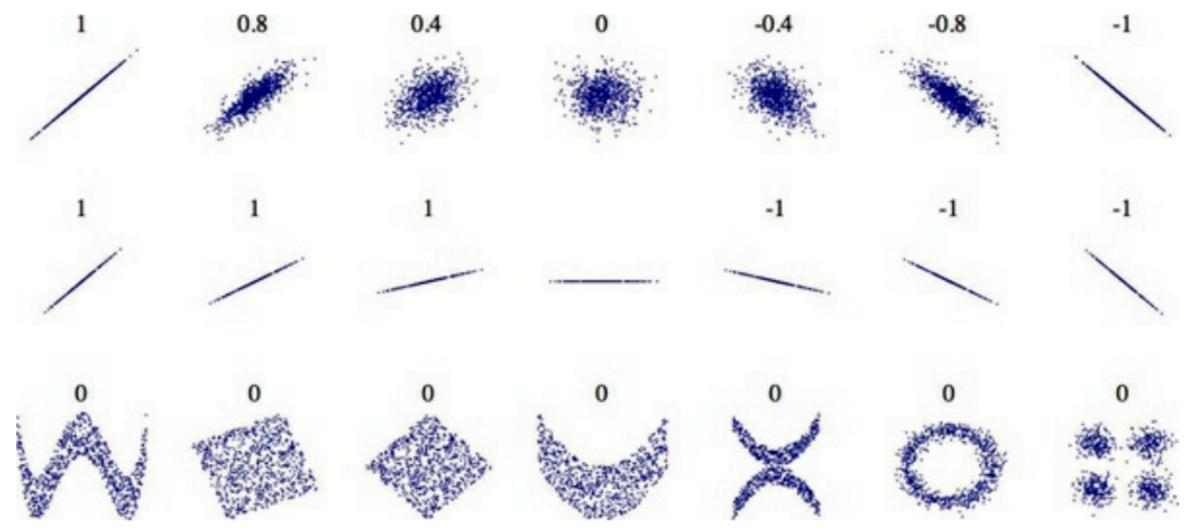


Figure 2-16. Standard correlation coefficient of various datasets (source: Wikipedia; public domain image)

Experiment with Attribute Combinations

housing["rooms_per_house"] = housing["total_rooms"] / housing["households"] housing["bedrooms_ratio"] = housing["total_bedrooms"] / housing["total_rooms"] housing["people_per_house"] = housing["population"] / housing["households"]

And then you look at the correlation matrix again:

<pre>>>> corr_matrix = housing.corr()</pre>					
<pre>>>> corr_matrix["median_house_value"].sort_values(ascending=False)</pre>					
median_house_value	1.000000				
median_income	0.688380				
rooms_per_house	0.143663				
total_rooms	0.137455				
housing_median_age	0.102175				
households	0.071426				
total_bedrooms	0.054635				
population	-0.020153				
people_per_house	-0.038224				
longitude	-0.050859				
latitude	-0.139584				
bedrooms_ratio	-0.256397				
Name: median_house_value, dtype: float64					

bedrooms_ratio has a high correlation

4 Prepare The Data For Machine Learning Algorithms

Clean the data

- Some data is missing the total_bedrooms value.
- Three ways to fix this:
 - Get rid of the corresponding districts.
 - Get rid of the whole attribute.
 - Set the missing values to some value (zero, the mean, the median, etc.). This is called **imputation**.

Handling Text and Categorical Attributes

- ocean_proximity has only a few values
- Replacing them with numbers will make it easier for ML to handle the data
 - But falsely implies that some values are closer to others

<pre>housing["ocean_proximity"].value_counts()</pre>					
<1H OCEAN	9136				
INLAND	6551				
NEAR OCEAN	2658				
NEAR BAY	2290				
ISLAND	5				

One-Hot Vectors

• A better way to represent such data

```
>>> housing_cat_1hot.toarray()
array([[0., 0., 0., 1., 0.],
      [1., 0., 0., 0., 0.],
      [0., 1., 0., 0., 0.],
      ...,
      [0., 0., 0., 0., 1.],
      [1., 0., 0., 0., 0.],
      [0., 0., 0., 0., 1.]])
```

Feature Scaling and Transformation

- Number of rooms ranges from 6 to 39,320
- Median incomes range from 0 to 15
- Models will weight number of rooms far more highly than income
- To prevent this, scale data in one of two ways:
- min-max scaling
 - Every value ranges from 0 to 1
 - Or -1 to 1 for neural nets
- standardization
 - Subtract the mean, then divide by standard deviation
 - Does not limit the range strictly
 - Less affected by outliers

Heavy Tail

- Values far from the mean are not exponentially rare
- Take square root or log to get closer to a Gaussian
 - Do this before normalization
- Another solution is bucketizing
 - Grouping values into ranges

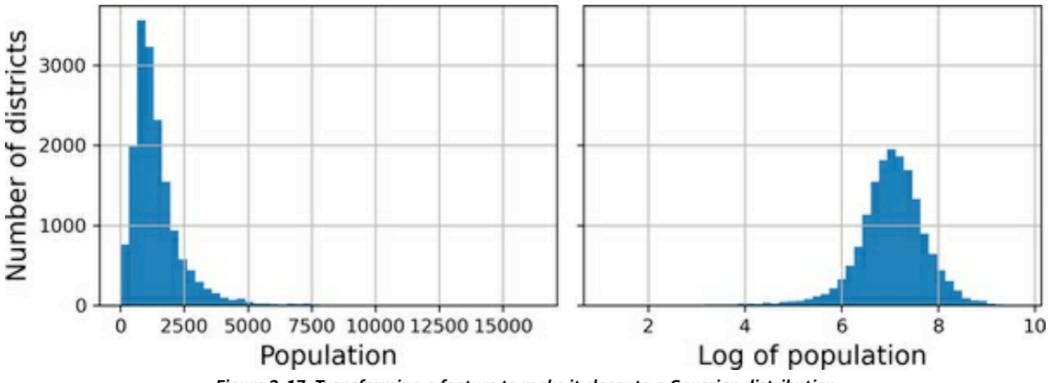


Figure 2-17. Transforming a feature to make it closer to a Gaussian distribution

5 Select A Model And Train It

Linear Regression

from sklearn.linear_model import LinearRegression

lin_reg = make_pipeline(preprocessing, LinearRegression())
lin_reg.fit(housing, housing_labels)

• The first prediction is off by more than \$200,000!

```
>>> housing_predictions = lin_reg.predict(housing)
>>> housing_predictions[:5].round(-2)  # -2 = rounded to the nearest hundred
array([243700., 372400., 128800., 94400., 328300.])
>>> housing_labels.iloc[:5].values
array([458300., 483800., 101700., 96100., 361800.])
```

Linear Regression

- The root mean squared error is over \$68,000
- The median_housing_values range from \$120,000 to \$265,000
- Pretty bad predictions

DecisionTreeRegressor

A more powerful model capable of finding complex nonlinear relationships

```
from sklearn.tree import DecisionTreeRegressor

tree_reg = make_pipeline(preprocessing, DecisionTreeRegressor(random_state=42))
tree_reg.fit(housing, housing_labels)

Now that the model is trained, you evaluate it on the training set:
>>> housing_predictions = tree_reg.predict(housing)
>>> tree_rmse = mean_squared_error(housing_labels, housing_predictions,
...
squared=False)
...
>>> tree_rmse
0.0
```

• Zero error suggests overfitting

Better Evaluation Using Cross-Validation

- Splits the training set into 10 subsets called folds
- Trains the model 10 times on 9 folds
 - Evaluating each one on the remaining fold

 Result is as bad as linear regression

Let's look at the results:

>>> pd	.Series(tree_rmses).describe()
count	10.000000
mean	66868.027288
std	2060.966425
min	63649.536493
25%	65338.078316
50%	66801.953094
75%	68229.934454
max	70094.778246
dtype:	float64

RandomForestRegressor

- Results are somewhat better, Error \$47,000
- But on the training set, the error is \$17,000
- Still a lot of overfitting

<pre>>>> pd.Series(forest_rmses).describe()</pre>		
count	10.000000	
mean	47019.561281	
std	1033.957120	
min	45458.112527	
25%	46464.031184	
50%	46967.596354	
75%	47325.694987	
max	49243.765795	
dtype:	float64	

6 Fine-Tune Your Model

Grid Search

- Scikit-Learn's GridSearchCSV class
- Tell it which hyperparameters you want to try, and what values to try
- It will use cross-validation to evaluate them

Randomized Search

- Evaluates a fixed number of random hyperparameter values
- Useful when the hyperparameter search space is large

Ensemble Methods

• Combines several models together

8 Launch, Monitor, And Maintain Your System

Launch, Monitor, and Maintain Your System

- Deploy your trained model as needed
 - Perhaps as a Web app

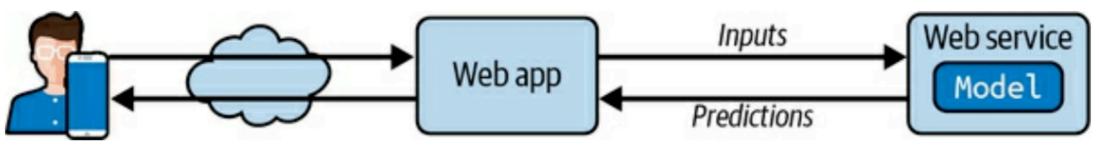


Figure 2-20. A model deployed as a web service and used by a web application

Performance Monitoring

- A component may break, causing performance to drop
- Or it may drop gradually, die to model rot
 - The parameters go out of date
- One measure of performance is downstream metrics
 - Number of recommended products sold per day
- Or send human raters sample pictures of products the model classified, to verify them
- It can be a lot of work to set up good performance monitoring

Automatic Updating and Retraining

- Collect fresh data and label it
- Write a script to train the moden and fine-tune the hyperparameters periodically
- Write another script to evaluate both the new model and the previous model on the updated test set
- Evaluate input data quality
- Keep backups of every model
 - Be ready to roll back

Ch 1b