Machine Learning
Security

Hands-0On
Machine Learning

2 End-to-End Machine with Scikit-Learn,
. . Keras & TensorFlow
Learning Project Conceps.Tos,and Techiaue

REILLY

Made Aug 22, 2023

Steps in an ML Project

1 Look at the big picture

2 Get the data

3 Explore and visualize the data to gain insights

4 Prepare the data for machine learning algorithms
5 Select a model and train it

6 Fine-tune your model

/ Present your solution

8 Launch, monitor, and maintain your system

Getting Real Data

» Popular open data repositories:

e OpenML.orqg

e Kaggle.com

e PapersWithCode.com

e UC Irvine Machine Learning Repository

e Amazon’'s AWS datasets

e TensorFlow datasets

» Meta portals (they list open data repositories):

o DataPortals.org

« OpenDataMonitor.eu

» Other pages listing many popular open data repositories:

o Wikipedia’s list of machine learning datasets

e Quora.com

e The datasets subreddit

1 Look At The Big Picture

Frame the Problem

 The goal is to predict the median housing price from the other
metrics in the data, such as number of bedrooms, location, and
Income In the area.

* The prediction will be used to make investment decisions.

 See the data pipeline below

Your component Other signals
/V\
Upstream AT N |
componentsl District pricing Investment analysis

District Investments

prices

Figure 2-2. A machine learning pipeline for real estate investments

System Design

* Supervised learning

* Data is labeled
 Regression

 Model will predict a value
e Batch learning

e No additional data will be added later

Types of Regression

 Multiple regression

* Uses multiple features to predict a value
 Univariate regression

* Predicts a single value
 Multivariate regression

* Predicts multiple values

Select a Performance Measure

* Root Mean Square Error (RMSE)
* Adds up the error for each item of data

 The most commonly used measure for regression tasks

m

RMSE (X, h) = Z(() ”)2

» Also called the Euclidean norm, or &

Select a Performance Measure

 Mean Absolute Error (MAE)
* Preferred if data has many outliers

* Also called Manhattan norm, or ¢

MAE (X, h) Z}h()

Check the Assumptions

 We're assuming the price will be used as a numerical value

 |If the next stage just uses categories, like "cheap”, "medium”, or
"expensive" we should be using classification instead of
regression

2 Get The Data

Load Data from Github

2O UntitledO.ipynb - Colaboratory

@ colab.research.google.com/drive/1rPZ7QGIPOT810n07EQ4-vOW7B8-SIYyF

") M UntitledO.ipynb v+

File Edit View Insert Runtime Tools Help Saving...

B comment

+ Code + Text

18 o load housing data():

tarball path = Path("datasets/housing.tgz")

if not tarball path.is_file():
Path("datasets").mkdir(parents= , exist ok=)
url = "https://github.com/ageron/data/raw/main/housing.tgz"
urllib.request.urlretrieve(url, tarball path)
with tarfile.open(tarball path) as housing tarball:

housing tarball.extractall(path="datasets")
return pd.read csv(Path("datasets/housing/housing.csv"))

housing = load housing data()
housing.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):

Non-Null Count

longitude non-null floaté64
latitude non-null floaté64
housing median_age non-null floaté64
total rooms non-null floaté64
total bedrooms non-null floaté64
population non-null floaté64
households non-null floaté64
median_income non-null floaté64
median_house value 20640 non-null floaté64
9 ocean_proximity 20640 non-null object
dtypes: float64(9), object(1l)
memory usage: 1.6+ MB

O~ s WwWN = O

1s completed at 10:57 AM

- Share

=

head() Shows First Five Rows

20 Untitled0.ipynb - Colaboratory -

< C 88 @ colab.research.google.com/drive/1rPZ7QGIPOT810n0O7EQ4-vOW7B8-SIYyF D ® @

e M UntitledO.ipynb v+

File Edit View Insert Runtime Tools Help Allchanges saved

B comment ax Share

RAPA
Disk

B &L W

+ Code + Text

B ge total rooms total bedrooms population median income median house value ocean proximity

880.0 129.0 322.0 8.3252 452600.0 NEAR BAY
7099.0 1106.0 2401.0 8.3014 358500.0 NEAR BAY
1467.0 190.0 496.0 7.2574 352100.0 NEAR BAY
1274.0 235.0 558.0 5.6431 341300.0 NEAR BAY

1627.0 280.0 565.0 3.8462 342200.0 NEAR BAY

value_counts|()

e Oocean_proximity is not numeric

O UntitledO.ipynb - Colaboratory -+

< @ colab.research.google.com/drive/1rPZ7QGIPOT81

0 M UntitledO.ipynb 7%
Ro)
File Edit View Insert Runtime Tools Help Allchanges saved

+ Code + Text

<1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
ISLAND 5

Name: ocean proximity, dtype: inté64

describe() Shows Statistics

~C Untitled0.ipynb - Colaboratory +

< o

o«e

colab.research.google.com/drive/1rPZ7QGIPOT810nO7EOQ4-vOwW7B8-SIYyF

M UntitledO.ipynb %
File Edit View

Bl comment a» Share

Insert Runtime Tools Help Allchanges saved

RAM
Disk

o 8 & [

+ Code + Text

longitude latitude housing median _age total rooms total bedrooms population

count 20640.000000 20640.000000 20640.000000 20640.000000 20433.000000 20640.000000 20640.000000

mean

std

min

25%

50%

75%

max

-119.569704

2.003532

-124.350000

-121.800000

-118.490000

-118.010000

-114.310000

35.631861

2.135952

32.540000

33.930000

34.260000

37.710000

41.950000

28.639486

12.585558

1.000000

18.000000

29.000000

37.000000

52.000000

2635.763081

2181.615252

2.000000

1447.750000

2127.000000

3148.000000

39320.000000

537.870553

421.385070

1.000000

296.000000

435.000000

647.000000

6445.000000

1425.476744

1132.462122

3.000000

787.000000

1166.000000

1725.000000

35682.000000

499.539680

382.329753

1.000000

280.000000

409.000000

605.000000

6082.000000

Histograms

 Show distribution of numerical attributes

matplotlib.pyplot as plt
housing.hist(bins=50, figsize=(12, 8))
plt.show()

longitude

A |
I WY

-124 -122 -120 -118 -116 -114
total_rooms

10000 20000 30000 40000
households

L

0 2000 4000

latitude

34 36 38 40
total_bedrooms

42

housing_median_age

2000 4000
median_income

6000

0

10000 20000 30000
median_house_value

10000@®0000@0000040000BO0O000

Median Income

It's not In dollars
It's been scaled and capped at 15 max and 0.5 min
Numbers represent roughly tens of thousands of dollars

Preprocessed attributes are common in ML, this should be OK

Other Capped Values

 Housing median age and median house value were capped

 Median house value is our target, which we want to predict

* |t being capped limits the value of our model

* If we want to predict beyond $500,000, there are two options:
* Collect proper labels for the capped districts

 Remove those districts from the training and test sets

Scale and Skewing

* These attributes have very different scales
 We'll fix them with feature scaling

* Many histograms are skewed right
* They extend more to the right than the left

e We'll transform them to fix that

Test Sets

 Take 20% of the data and set it aside
* There are two ways to choose the test set
 Randomly

« Stratified sampling

Random Sampling

* Fine for large data sets
 But may introduce sampling bias
 Consider a sample from a population that is 51% female

A random sample

* Might contain only 48%
* or 54% females

Stratified Sampling

* Take the important feature and gather it into categories
 Then sample the correct number from each category

* TJraining and test sets match now

» Training set:
0.350594
0.318859
0.176296
0.114462
0.039789

: income cat

.350533
.318798
176357

2 3 .114341
Income category 039971

3 Explore And Visualize The Data To Gain Insights

Visualizing Geographical Data

o Scatterplot misses detail as dots cover other dots

42 -

W
Q0
\

latitude

w
(o)}
|

-124 -122 -120 -118 —-116 -114
longitude

Transparency

* Alpha = 0.2 shows more detail in high-density areas

L
T
=
=
-
L

-124 -122 -120
longitude

Add Price with Color

* Areas near the ocean and with higher population density have

higher prices

plt.show()

latitude

42 A

40 -

38 1

36 T

c="median
legend=

', x="longitude", y="latitude", grid=True,

house value", cmap="jet", colorbar=
2, sharex= se, figsize=(10, 7))

500000
population
400000
[
>
- 300000 T
>I
[
w
=
o
=
CI
i
el
200000 ¢
LY
of @ o 100000
. ® ¥
. | -0.~ .
-‘)
"
-124 -122 -120 -118 -116 -114
longitude

Correlations

e Strongest correlations with median_house_value:

 median_income, total_rooms, housing_median_age, latitude

corr matrix =
corr matrix["median house value"].sort values(ascending= se)

<ipython-input-24-5laleébf2ebd4>:1: FutureWarning: The default va
corr matrix = housing.corr()
median house value .000000

median_ income .688380
total rooms .137455
housing median age .102175
households .071426

total bedrooms .054635
population .020153
longitude .050859
latitude .139584

Scatter Matrix

e Strongest relationship is median_income

| 200000

median house value

I
o

median income

(%]
£
S
e
h
T
-
S

N
(=}
i

o

R g
median_income housing_median_age

median_house_value total_rooms

median Income

» Correlation is strong
 Clusters of points at $500,000. $450,000. and $350,000

500000 -

400000 ~

I 300000 -

200000 -

w
2
©
>
W
v
>
S)
<
c
0
S
@
(S

100000 A

o-l

8 10 12 14
median_income

Correlation Assumes a Line

0 0 0 0
3. 3 ,
ﬂz ”‘i\ %‘ (~‘
«t : JE, ’,?“}. Oj;:‘t “ .
' ’ %‘;"‘H&y ks e \q:“' "!?’.
4 . ’ - 4 4 Vs ot -
1 : (Y D v “N‘i\ ;q;i m%‘ :
’ . el & A" “r o~ -
& A Ak & atine

Figure 2-16. Standard correlation coefficient of various datasets (source: Wikipedia; public domain image)

Experiment with Attribute Combinations

housing["rooms_per_house"] = housing["total _rooms"] / housing["households"]
housing["bedrooms_ratio"] = housing["total bedrooms"] / housing["total rooms"]
housing["people_per_house"”] = housing["population"] / housing["households"]

And then you look at the correlation matrix again:

>>> corr_matrix = housing.corr()
>>> corr_matrix["median_house value"].sort_values(ascending=False)
median_house_value 1.000000

median_1income 0.688380
rooms_per_house 0.143663
total_rooms 0.137455
housing_median_age 0.102175
households 0.071426
total_bedrooms 0.054635
population -0.020153
people_per_house -0.038224
longitude -0.050859
latitude -0.139584
bedrooms_ratio -0.256397

Name: median_house_value, dtype: float64

* bedrooms_ratio has a high correlation

4 Prepare The Data For Machine Learning Algorithms

Clean the data

 Some data is missing the total_bedrooms value.
* Three ways to fix this:

* Get rid of the corresponding districts.

* Get rid of the whole attribute.

» Set the missing values to some value (zero, the mean, the
median, etc.). This is called imputation.

Handling Text and Categorical Attributes

e ocean_proximity has only a few values

* Replacing them with numbers will make it easier for ML to handle
the data

e But falsely implies that some values are closer to others

housing["ocean proximity"].value counts()

<1H OCEAN
INLAND
NEAR OCEAN
NEAR BAY
ISLAND

One-Hot Vectors

* A better way to represent such data

>>> housing_cat_1lhot.toarray()
array([[0., 0., 0., 1., 0.],
(1., 0., 0., 0., 0.],
0., 1., 0., 0., 0.],

Feature Scaling and Transformation

 Number of rooms ranges from 6 to 39,320
 Median incomes range from 0 to 15
 Models will weight number of rooms far more highly than income
e Jo prevent this, scale data in one of two ways:
 min-max scaling
e Every value ranges from 0O to 1
 Or-1to 1 for neural nets
* standardization
e Subtract the mean, then divide by standard deviation
* Does not limit the range strictly
» |Less affected by outliers

Heavy Talil

e Values far from the mean are not exponentially rare
* Take square root or log to get closer to a Gaussian
* Do this before normalization
* Another solution is bucketizing
e Grouping values into ranges

3000 A

2000 A

1000 A

Number of districts

0 2500 S000 7500 10000 12500 15000 2 4 6 8 10
Population Log of population

Figure 2-17. Transforming a feature to make it closer to a Gaussian distribution

5 Select A Model And Train It

Linear Regression

from sklearn.linear_model import LinearRegression

lin_reg = make pipeline(preprocessing, LinearRegression())
lin_reg.fit(housing, housing labels)

* The first prediction is off by more than $200,000!

>>> housing predictions = lin_reg.predict(housing)

>>> housing predictions[:5].round(-2) # -2 = rounded to the nearest hundred
array([243700., 372400., 128800., 94400., 328300.])

>>> housing labels.iloc[:5].values

array([458300., 483800., 101700., 96100., 361800.])

Linear Regression

* The root mean squared error is over $68,000

* The median_housing_values range from $120,000 to $265,000

* Pretty bad predictions

>>> from sklearn.metrics import mean_squared_error
>>> lin_rmse = mean_squared _error(housing labels, housing predictions,
squared=False)

>>> Llin_rmse
68687.89176589991

DecisionTreeRegressor

* A more powerful model capable of finding complex nonlinear
relationships

from sklearn.tree import DecisionTreeRegressor

tree_reg = make_pipeline(preprocessing, DecisionTreeRegressor(random_state=42))
tree_reg.fit(housing, housing_labels)

Now that the model is trained, you evaluate it on the training set:

>>> housing_predictions = tree_reg.predict(housing)
>>> tree_rmse = mean_squared_error(housing_labels, housing predictions,
squared=False)

>>> tree_rmse
0.0

e Zero error suggests overfitting

Better Evaluation Using Cross-Validation

* Splits the training set into 10 subsets called folds
* Trains the model 10 times on 9 folds
e Evaluating each one on the remaining fold

from sklearn.model_selection import cross_val_score

tree_rmses = -cross_val_score(tree_reg, housing, housing_labels,
scoring="neg_root_mean_squared_error", cv=10)

Let's look at the results:
 Result is as bad as linear
. >>> pd.Series(tree_rmses).describe()

reQreSSlon count 10.000000
mean 66868.027288
std 2060.966425
min 63649.536493
25% 65338.078316
50% 66801.953094
75% 68229.934454
max 70094 .778246
dtype: float64

RandomForestRegressor

from sklearn.ensemble import RandomForestRegressor

forest_reg = make_pipeline(preprocessing,
RandomForestRegressor(random_state=42))
forest_rmses = -cross_val_score(forest_reg, housing, housing_labels,
scoring="neg_root_mean_squared_error", cv=10)

 Results are somewhat better,

Error $47,000
>>> pd.Series(forest_rmses).describe()
* But on the training set, the error count 16006000
. mean 47019.561281
IS $1 7,000 std 1033.957120
. e min 45458.112527
« Still a lot of overfitting 2% 46464.031184
50% 46967.596354
75% 47325.694987
max 49243 .765795
dtype: float64

6 Fine-Tune Your Model

Grid Search

e Scikit-Learn's GridSearchCSV class

* Tell it which hyperparameters you want to try, and what values to
try

e It will use cross-validation to evaluate them

Randomized Search

e Evaluates a fixed number of random hyperparameter values

* Useful when the hyperparameter search space is large

Ensemble Methods

 Combines several models together

8 Launch, Monitor, And Maintain Your System

Launch, Monitor, and Maintain Your System

* Deploy your trained model as needed

 Perhaps as a Web app

i Inputs ' | Web service
Web app MadaT
L Predictions - }

Figure 2-20. A model deployed as a web service and used by a web application

Performance Monitoring

A component may break, causing performance to drop
* Or it may drop gradually, die to model rot
 The parameters go out of date
* One measure of performance is downstream metrics
 Number of recommended products sold per day

 Or send human raters sample pictures of products the model
classified, to verify them

* |t can be a lot of work to set up good performance monitoring

Automatic Updating and Retraining

 Collect fresh data and label it

* Write a script to train the moden and fine-tune the
hyperparameters periodically

* Write another script to evaluate both the new model and the
previous model on the updated test set

e Evaluate input data quality
» Keep backups of every model
* Be ready to roll back

