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Steps in an ML Project

1 Look at the big picture

2 Get the data

3 Explore and visualize the data to gain insights

4 Prepare the data for machine learning algorithms
5 Select a model and train it

6 Fine-tune your model

/ Present your solution

8 Launch, monitor, and maintain your system



Getting Real Data

» Popular open data repositories:

e OpenML.orqg

e Kaggle.com

e PapersWithCode.com

e UC Irvine Machine Learning Repository

e Amazon’'s AWS datasets

e TensorFlow datasets

» Meta portals (they list open data repositories):

o DataPortals.org

« OpenDataMonitor.eu

» Other pages listing many popular open data repositories:

o Wikipedia’s list of machine learning datasets

e Quora.com

e The datasets subreddit




1 Look At The Big Picture



Frame the Problem

 The goal is to predict the median housing price from the other
metrics in the data, such as number of bedrooms, location, and
Income In the area.

* The prediction will be used to make investment decisions.

 See the data pipeline below
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Figure 2-2. A machine learning pipeline for real estate investments



System Design

* Supervised learning

* Data is labeled
 Regression

 Model will predict a value
e Batch learning

e No additional data will be added later



Types of Regression

 Multiple regression

* Uses multiple features to predict a value
 Univariate regression

* Predicts a single value
 Multivariate regression

* Predicts multiple values



Select a Performance Measure

* Root Mean Square Error (RMSE)
* Adds up the error for each item of data

 The most commonly used measure for regression tasks

m

RMSE (X, h) = Z( ( ) ”)2

» Also called the Euclidean norm, or &



Select a Performance Measure

 Mean Absolute Error (MAE)
* Preferred if data has many outliers

* Also called Manhattan norm, or ¢

MAE (X, h) Z}h( )




Check the Assumptions

 We're assuming the price will be used as a numerical value

 |If the next stage just uses categories, like "cheap”, "medium”, or
"expensive" we should be using classification instead of
regression



2 Get The Data



Load Data from Github
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18 o load housing data():

tarball path = Path("datasets/housing.tgz")

if not tarball path.is_file():
Path("datasets").mkdir(parents= , exist ok= )
url = "https://github.com/ageron/data/raw/main/housing.tgz"
urllib.request.urlretrieve(url, tarball path)
with tarfile.open(tarball path) as housing tarball:

housing tarball.extractall(path="datasets")
return pd.read csv(Path("datasets/housing/housing.csv"))

housing = load housing data()
housing.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):

# Non-Null Count

longitude non-null floaté64
latitude non-null floaté64
housing median_age non-null floaté64
total rooms non-null floaté64
total bedrooms non-null floaté64
population non-null floaté64
households non-null floaté64
median_income non-null floaté64
median_house value 20640 non-null floaté64
9 ocean_proximity 20640 non-null object
dtypes: float64(9), object(1l)
memory usage: 1.6+ MB
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head() Shows First Five Rows

20 Untitled0.ipynb - Colaboratory -

< C 88 @ colab.research.google.com/drive/1rPZ7QGIPOT810n0O7EQ4-vOW7B8-SIYyF D ® @

e M UntitledO.ipynb v+

File Edit View Insert Runtime Tools Help Allchanges saved

B comment ax Share

RAPA
Disk

B &L W

+ Code + Text

B ge total rooms total bedrooms population median income median house value ocean proximity

880.0 129.0 322.0 8.3252 452600.0 NEAR BAY
7099.0 1106.0 2401.0 8.3014 358500.0 NEAR BAY
1467.0 190.0 496.0 7.2574 352100.0 NEAR BAY
1274.0 235.0 558.0 5.6431 341300.0 NEAR BAY

1627.0 280.0 565.0 3.8462 342200.0 NEAR BAY




value_counts|()

e Oocean_proximity is not numeric
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<1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
ISLAND 5

Name: ocean proximity, dtype: inté64




describe() Shows Statistics
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longitude latitude housing median _age total rooms total bedrooms population

count 20640.000000 20640.000000 20640.000000 20640.000000 20433.000000 20640.000000 20640.000000

mean

std

min
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max

-119.569704
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3.000000
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1725.000000

35682.000000
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Histograms

 Show distribution of numerical attributes

matplotlib.pyplot as plt
housing.hist(bins=50, figsize=(12, 8))
plt.show()
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Median Income

It's not In dollars
It's been scaled and capped at 15 max and 0.5 min
Numbers represent roughly tens of thousands of dollars

Preprocessed attributes are common in ML, this should be OK



Other Capped Values

 Housing median age and median house value were capped

 Median house value is our target, which we want to predict

* |t being capped limits the value of our model

* If we want to predict beyond $500,000, there are two options:
* Collect proper labels for the capped districts

 Remove those districts from the training and test sets



Scale and Skewing

* These attributes have very different scales
 We'll fix them with feature scaling

* Many histograms are skewed right
* They extend more to the right than the left

e We'll transform them to fix that



Test Sets

 Take 20% of the data and set it aside
* There are two ways to choose the test set
 Randomly

« Stratified sampling



Random Sampling

* Fine for large data sets
 But may introduce sampling bias
 Consider a sample from a population that is 51% female

A random sample

* Might contain only 48%
* or 54% females




Stratified Sampling

* Take the important feature and gather it into categories
 Then sample the correct number from each category

* TJraining and test sets match now

» Training set:
0.350594
0.318859
0.176296
0.114462
0.039789

: income cat

.350533
.318798
176357

2 3 .114341
Income category 039971







3 Explore And Visualize The Data To Gain Insights



Visualizing Geographical Data

o Scatterplot misses detail as dots cover other dots

42 -

W
Q0
\

latitude

w
(o)}
|

-124 -122 -120 -118 —-116 -114
longitude




Transparency

* Alpha = 0.2 shows more detail in high-density areas
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Add Price with Color

* Areas near the ocean and with higher population density have

higher prices

plt.show()
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Correlations

e Strongest correlations with median_house_value:

 median_income, total_rooms, housing_median_age, latitude

corr matrix =
corr matrix["median house value"].sort values(ascending= se)

<ipython-input-24-5laleébf2ebd4>:1: FutureWarning: The default va
corr matrix = housing.corr()
median house value .000000

median_ income .688380
total rooms .137455
housing median age .102175
households .071426

total bedrooms .054635
population .020153
longitude .050859
latitude .139584




Scatter Matrix

e Strongest relationship is median_income
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median Income

» Correlation is strong
 Clusters of points at $500,000. $450,000. and $350,000
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Correlation Assumes a Line
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Figure 2-16. Standard correlation coefficient of various datasets (source: Wikipedia; public domain image)



Experiment with Attribute Combinations

housing["rooms_per_house"] = housing["total _rooms"] / housing["households"]
housing["bedrooms_ratio"] = housing["total bedrooms"] / housing["total rooms"]
housing["people_per_house"”] = housing["population"] / housing["households"]

And then you look at the correlation matrix again:

>>> corr_matrix = housing.corr()
>>> corr_matrix["median_house value"].sort_values(ascending=False)
median_house_value 1.000000

median_1income 0.688380
rooms_per_house 0.143663
total_rooms 0.137455
housing_median_age 0.102175
households 0.071426
total_bedrooms 0.054635
population -0.020153
people_per_house -0.038224
longitude -0.050859
latitude -0.139584
bedrooms_ratio -0.256397

Name: median_house_value, dtype: float64

* bedrooms_ratio has a high correlation



4 Prepare The Data For Machine Learning Algorithms



Clean the data

 Some data is missing the total_bedrooms value.
* Three ways to fix this:

* Get rid of the corresponding districts.

* Get rid of the whole attribute.

» Set the missing values to some value (zero, the mean, the
median, etc.). This is called imputation.



Handling Text and Categorical Attributes

e ocean_proximity has only a few values

* Replacing them with numbers will make it easier for ML to handle
the data

e But falsely implies that some values are closer to others

housing[ "ocean proximity"].value counts()

<1H OCEAN
INLAND
NEAR OCEAN
NEAR BAY
ISLAND




One-Hot Vectors

* A better way to represent such data

>>> housing_cat_1lhot.toarray()
array([[0., 0., 0., 1., 0.],
(1., 0., 0., 0., 0.],
0., 1., 0., 0., 0.],




Feature Scaling and Transformation

 Number of rooms ranges from 6 to 39,320
 Median incomes range from 0 to 15
 Models will weight number of rooms far more highly than income
e Jo prevent this, scale data in one of two ways:
 min-max scaling
e Every value ranges from 0O to 1
 Or-1to 1 for neural nets
* standardization
e Subtract the mean, then divide by standard deviation
* Does not limit the range strictly
» |Less affected by outliers



Heavy Talil

e Values far from the mean are not exponentially rare
* Take square root or log to get closer to a Gaussian
* Do this before normalization
* Another solution is bucketizing
e Grouping values into ranges
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Figure 2-17. Transforming a feature to make it closer to a Gaussian distribution



5 Select A Model And Train It



Linear Regression

from sklearn.linear_model import LinearRegression

lin_reg = make pipeline(preprocessing, LinearRegression())
lin_reg.fit(housing, housing labels)

* The first prediction is off by more than $200,000!

>>> housing predictions = lin_reg.predict(housing)

>>> housing predictions[:5].round(-2) # -2 = rounded to the nearest hundred
array([243700., 372400., 128800., 94400., 328300.])

>>> housing labels.iloc[:5].values

array([458300., 483800., 101700., 96100., 361800.])




Linear Regression

* The root mean squared error is over $68,000

* The median_housing_values range from $120,000 to $265,000

* Pretty bad predictions

>>> from sklearn.metrics import mean_squared_error
>>> lin_rmse = mean_squared _error(housing labels, housing predictions,
squared=False)

>>> Llin_rmse
68687.89176589991




DecisionTreeRegressor

* A more powerful model capable of finding complex nonlinear
relationships

from sklearn.tree import DecisionTreeRegressor

tree_reg = make_pipeline(preprocessing, DecisionTreeRegressor(random_state=42))
tree_reg.fit(housing, housing_labels)

Now that the model is trained, you evaluate it on the training set:

>>> housing_predictions = tree_reg.predict(housing)
>>> tree_rmse = mean_squared_error(housing_labels, housing predictions,
squared=False)

>>> tree_rmse
0.0

e Zero error suggests overfitting



Better Evaluation Using Cross-Validation

* Splits the training set into 10 subsets called folds
* Trains the model 10 times on 9 folds
e Evaluating each one on the remaining fold

from sklearn.model_selection import cross_val_score

tree_rmses = -cross_val_score(tree_reg, housing, housing_labels,
scoring="neg_root_mean_squared_error", cv=10)

Let's look at the results:
 Result is as bad as linear
. >>> pd.Series(tree_rmses).describe()

reQreSSlon count 10.000000
mean 66868.027288
std 2060.966425
min 63649.536493
25% 65338.078316
50% 66801.953094
75% 68229.934454
max 70094 .778246
dtype: float64




RandomForestRegressor

from sklearn.ensemble import RandomForestRegressor

forest_reg = make_pipeline(preprocessing,
RandomForestRegressor(random_state=42))
forest_rmses = -cross_val_score(forest_reg, housing, housing_labels,
scoring="neg_root_mean_squared_error", cv=10)

 Results are somewhat better,

Error $47,000
>>> pd.Series(forest_rmses).describe()
* But on the training set, the error count 16006000
. mean 47019.561281
IS $1 7,000 std 1033.957120
. e min 45458.112527
« Still a lot of overfitting 2% 46464.031184
50% 46967.596354
75% 47325.694987
max 49243 .765795
dtype: float64




6 Fine-Tune Your Model



Grid Search

e Scikit-Learn's GridSearchCSV class

* Tell it which hyperparameters you want to try, and what values to
try

e It will use cross-validation to evaluate them



Randomized Search

e Evaluates a fixed number of random hyperparameter values

* Useful when the hyperparameter search space is large



Ensemble Methods

 Combines several models together



8 Launch, Monitor, And Maintain Your System



Launch, Monitor, and Maintain Your System

* Deploy your trained model as needed

 Perhaps as a Web app

i Inputs ' | Web service
Web app MadaT
L Predictions - }

Figure 2-20. A model deployed as a web service and used by a web application




Performance Monitoring

A component may break, causing performance to drop
* Or it may drop gradually, die to model rot
 The parameters go out of date
* One measure of performance is downstream metrics
 Number of recommended products sold per day

 Or send human raters sample pictures of products the model
classified, to verify them

* |t can be a lot of work to set up good performance monitoring



Automatic Updating and Retraining

 Collect fresh data and label it

* Write a script to train the moden and fine-tune the
hyperparameters periodically

* Write another script to evaluate both the new model and the
previous model on the updated test set

e Evaluate input data quality
» Keep backups of every model
* Be ready to roll back






