Machine Learning
Security

Hands-0On
Machine Learning

3 Classification with Scikit-Learn,
Kerqs & TensorFlow

REILLY

Made Aug 26, 2023

Topics

* Project ML 105
- MNIST
 Training a Binary Classifier
- Performance Measures
- Multiclass Classification
* Error Analysis
- Multilabel Classification

- Multioutput Classification

MNIST

The "Hello World" of Machine Learnin

e 70,000 images of handwritten digits

2O Untitled0.ipynb - Colaboratory

@ colab.research.google.com/drive/11Z78M6w0dHrFWMyYw3SDqtgOPZToUHc3

B comment - Share

~C M UntitledO.ipynb v+

File Edit View Insert Runtime Tools Help Allchanges saved

+ Code + Text

A ° from sklearn.datasets import fetch openml

mnist = fetch openml('mnist 784', as_ frame=
print (mnist.DESCR)

Author: Yann LeCun, Corinna Cortes, Christopher J.C. Burges

Source: [MNIST Website](: - - st/) - Date unknown

**Please citek*:

The MNIST database of handwritten digits with 784 features, raw data available at:

It is a subset of a larger set available from NIST. The digits have been size-normalized and centered in
With some classification methods (particularly template-based methods, such as SVM and K-nearest neighbor

The MNIST training set is composed of 30,000 patterns from SD-3 and 30,000 patterns from SD-1. Our test s

Downloaded from openml.org.

24s completed at 1:14PM

Xandy

X has the pixel values

O x v-
e 784 pixels print (X)
(X.shape)
» Each is a number from S
0 to 255 '
[[0. O.
* Y has the label [0. O.
(0. 0.
* Adigit from0to 9 [0. 0.

(0. 0. 0. ...
(0. 0. 0. ...
(70000, 784)

['5' ‘0" ‘4’ ... '
(70000,)

Viewing the Images

import matplotlib.pyplot as plt

plot digit(image data):

image = image data.reshape(28, 28)
plt.imshow(image, cmap="binary")
plt.axis("off")

.figure(figsize=(9, 9))

idx, image_data in enumerate(X[:100]):
plt.subplot (10, 10, idx + 1)

plot digit(image data)

.subplots adjust(wspace=0, hspace=0)
.show()

o WL
NN NN
D™ — A

N X A
% Q40

Training and Testing Sets

X train, X test, y train, y test = X[:60000], X[60000:], y[:60000], y[60000:]
print("Training set:", len(X train))
print("Test set:", len(X test))

Training set: 60000
Test set: 10000

Training a Binary Classifier

Preparing Binary Data

e True ="5"; False = "Not 5"

* Both sets are mostly "False”

import numpy
y train 5 =
y test 5

print("Training set:", y train 5)
print("True:", numpy.count nonzero(y train 5 == T
print(“False:", numpy.count nonzero(y train 5 == False

print ()

print("“Test set:", y test 5)

print("“True:", numpy.count nonzero(y test 5 == 1)
print(“False:", numpy.count nonzero(y test 5 == False))

Training set: [True False False ... True False False]
True: 5421
False: 54579

Test set: [False False False ... False True False]

True: 892
False: 9108

Linear Model

 The image provides

/84 pixels
Input Image l;"
* The brightness is a
number from 0 to
255
« The neuron calculates Pixels .

an output by
multiplying each pixel
by a weight and
adding them together

Neuron

e There are 784
parameters

Stochastic Gradient Descent

* A simple, efficient way to fit linear classifiers

* See https://scikit-learn.org/stable/modules/sgd.html

https://scikit-learn.org/stable/modules/sgd.html

Training a Binary Classifier

from sklearn.linear model import SGDClassifier

sgd clf = SGDClassifier(random_state=42, verbose=2)
sgd clf.fit(X_train, y train 5)

print("Prediction for image 0 (",y[0],"):", sgd_clf.predict([X[0]]))
print("Prediction for image 1 (",y[1l],"):", sgd_clf.predict([X[1]]))
print("Prediction for image 2 (",y[2],"):", sgd_clf.predict([X[2]]))

* Predicts first three training images correctly

-- Epoch 237

Norm: 152.72, NNZs: 674, Bias: 79.301728, T: 14220000, Avg. loss: 78.698093
Total training time: 27.14 seconds.

-- Epoch 238

Norm: 152.05, NNZs: 674, Bias: 79.342428, T: 14280000, Avg. loss: 77.607774
Total training time: 27.24 seconds.

-- Epoch 239

Norm: 151.52, NNZs: 674, Bias: 79.387858, T: 14340000, Avg. loss: 77.870948
Total training time: 27.34 seconds.

Convergence after 239 epochs took 27.34 seconds

Prediction for image 0 (5): [True]

Prediction for image 1 (0): [False]

Prediction for image 2 (4): [False]

Performance Measures

Measuring Accuracy Using Cross-Validation

from sklearn.model_selection import cross_val_ score

cross_val score(sgd _clf, X train, y train 5, cv=3, scoring="accuracy")

e "cv = 3" means three folds
* Train model three times on 2/3 of the training data
 Evaluate it on the other 1/3 of the data each time

* Accuracy > 95%

-- Epoch 131
Norm: 340.06, NNZs: 657, Bias: 91.122958, T: 5240000, Avg. loss: 202.672238

Total training time: 8.84 seconds.

Convergence after 131 epochs took 8.84 seconds
array([0.95035, 0.96035, 0.9604))

How Good is 95%7?

 90% of the data is False (Not "5")
* So simply classifying everything as False would be 90% correct

e Accuracy alone is not a preferred performance measure

Confusion Matrices

from sklearn.model_ selection import cross_val predict
y_train pred = cross_val predict(sgd _clf, X train, y train 5, cv=3)
from sklearn.metrics import confusion_matrix

cm = confusion matrix(y_train 5, y train pred)
cm

* Flrst row is the False images (Not "5")
* 687 incorrectly classified as True ("5")

 Second row is the True images ("5")
* 1891 incorrectly classified as False (Not "5")

Convergence after 131 epochs took 8.21 seconds
array([[53892, 6871,
[1891, 3530]])

Precision

e TP = True Positives

e FP = False Positives

precision =

I'P

I'P+FP

 Measures accuracy of positive predictions

array([[53892,
[1891,

6871,
353071)

So the Precision is

From the matrix in the image above:

« 687 non-5's were identified as 5's -- these are False Positives
« 3530 5's were identified as 5's -- these are True Positives

Precision = 3530/ (3530 + 687) = 0.837 = 83.7%

Precision
TP
TP+ FP

precision =

 BUT a classifier can get perfect precision by classifying
everything as False except one which it can accurately classify

as True
* No False Positives, but many False Negatives

Recall -

all =
T TPYFN

* Also called sensitivity or the true positive rate (TPR)
e TP = True Positives
* FN = False Negatives

 Measures the ratio of positive instances that are correctly
detected

array([[53892, 6871,
[1891, 3530]])

« 1891 5's were identified as non-5's -- these are False Negatives
« 3530 5's were identified as 5's -- these are True Positives

So the Recall is

Recall = 3530 / (3530 + 1891) = 0.651 = 65.1%

Precision

1I'P
I'P+FP

precision =

TP = True Positives
 FP = False Positives
 Measures accuracy of positive predictions

* BUT a classifier can get perfect precision by classifying
everything as False except one which it can accurately classify

as True
* No False Positives, but many False Negatives

Precision

1I'P
I'P+FP

precision =

TP = True Positives
 FP = False Positives
 Measures accuracy of positive predictions

* BUT a classifier can get perfect precision by classifying
everything as False except one which it can accurately classify

as True
* No False Positives, but many False Negatives

Negative

Actual

Positive

FN

Negative

A Simple Example

Predicted

& R 7

-
S

A

Positive n

555

— "

Recall
(e.g., 3outof5)

Figure 3-3. An illustrated confusion matrix showing examples of true negatives (top left), false
positives (top right), false negatives (lower left), and true positives (lower right)

Precision

(e.g., 3outof 4)

F1 Score

2 precision X recall TP

Fy = =2 X — :
: 1 __ 4 1 precision + recall —pp_ ENHEP

precision recall 2

* F1is high only if both precision and recall are high

|t favors classifiers with similar precision and recall

The Precision/Recall Trade-off

* The neuron puts out a signal

e Signal above threshold = "True"

Neuron .

Output Low < » High

Threshold

Precision = Recall

Precision < Recall Precision > Recall

The Precision/Recall Trade-off

Precision: 6/8=75% 4/5=80% 3/3=100%
Recall: 6/6=100% 4/6=67% 3/6=50%

§ 3+ 245 2 5%« ATEEN

. e S ' ’ - s o
Negative predictions e, B _# Positive predictions

~ o ’ '
Various thresholds

Figure 3-4. The precision/recall trade-off: images are ranked by their classifier score, and those above the chosen decision
threshold are considered positive; the higher the threshold, the lower the recall, but (in general) the higher the precision

core

1.0

0.8

0.6

0.4

0.2

0.0

Effect of Threshold

---’b"q~ '
"o‘- \\ I
b I
J Sy NS
| / -==Precision
/ - Recall
/
: F S - W S— T UTTTE threshold
/
/
/7
7
- ”
’/
ﬂ”
b e -
~40000 ~20000 0 20000 40000
Threshold

Figure 3-5. Precision and recall versus the decision threshold

Precision/Recall Curve

1.0

0.8 A

o
o

Precision

o
I

L2~

0.0

Precision/Recall cUrve
Point at threshold 3,000

Higher
threshold

0.0

OTZ 0T4 OT6
Recall

0.8

1.0

The ROC Curve

* Reciever Operating Characteristic (ROC) Curve

e Area Under the
Curve (AUC)

e 0.5 for arandom
classifier

* 1.0 for a perfect
classifier

1.0

o
o

o
o

True Positive Rate (Recall)

o
(N

0.0 4=

0.4 -

ﬂgher
threshold

~" —— ROC curve

Random classifier's ROC curve
Threshold for 90% precision

0.0

0.2

0.4 0.6 0.8

False Positive Rate (Fall-Out)

1.0

Comparing Models

Precision

1.0
,“Q.-—~‘~
' -------
l il ol B
0.8-’
“
‘\
‘\
\
‘
0.6 - \
‘\
\
‘
)
\
\
h
0.4 - §
\
\
\
\
\
\
0.2 \
—— Random Forest \
y
-== SGD
0.0 1 T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Random Forest v. Linear Model

* Linear model
 Precision 83.7%, Recall 65.1%
* F10.732, AOC 0.960

* Random Forest
* Precision 99.1%, Recall 86.6%
* F10.924, AOC 0.998

Multiclass Classification

Binary Classifier o 5

* Qutput is True or False

o ||5|| or “NOt 5|| Pixels

Neuron

-
—
-
pp—— Y 1 L

000000

Multiclass Classifier

One-versus-the-Rest (OVR)

Ten Binary Classifiers

Combine them to form a multiclass classifier

e Each classifier reports a result and a "decision score”
* The signal from the neuron

« Select the class with the highest decision score

i’ i’ W 1’
0" or "Not 0" 4" or "Not 1" m "9" or "NOt 9"'

0.0
000

One-versus-One (OvO)

OO . @

2" "0" or "3" "O"

Y OP . @

"1"or "2" "1" or "3" "1"

P @

"2" or "3" "2"

53

II8II or II9II

One-versus-One (OvO)

 Number of binary classifiers:

e 9+8+7+6+5+4+3+2+1 =45
 For N categories,

e Nx(N-1)/ 2
* Run the image through all 45 binary classifiers
» Select the digit that wins the most duels

* Each classifier only needs to be trained on those two digits of training
data

* This is an advantage for algorithms that scale poorly with the size of
the training set

* Like Support Vector Machines
* Most of the time, OVR is preferred

Support Vector Machine: OvO

from sklearn.svm import SVC

svm_clf = SVC(random _state=42)
svm_clf.fit(X_train[:2000], y_train[:2000]) # y train, not y train_5

e Scikit-Learn automatically runs OvO for the SVC model

* The classifier scores are highest for "5"

>>> some_digit_scores = svm_clf.decision_function([some_digit])

>>> some_digit_scores.round(2)
array([[3.79, ©0.73, 6.06, 8.3, -0.29, 9.3, 1.75, 2.77, 7.21,

4.82]])

Support Vector Machine: OvR

from sklearn.multiclass import OneVsRestClassifier

ovr_clf = OneVsRestClassifier(SVC(random state=42))
ovr_clf.fit(X _train[:2000], y train[:2000])

e OneVsRestClassifier forces it to use OvR

Support Vector Machine: OvR

>>> sgd_clf = SCGDClassifier(random_state=42)
>>> sgd_clf.fit(X_train, y_train)

>>> sgd_clf.predict([some_digit])
array(['3'], dtype="<U1")

» Stochastic Gradient Descent (SGD)
 Used OvR; 10 binary classifiers
* Incorrectly predicted "3", but "5" was almost as strong

>>> sgd_clf.decision_function([some_digit]).round()
array([[-31893., -34420., -9531., 1824., -22320., -1386., -26189.,
-16148., -4604., -12051.]])

Error Analysis

Confusion Matrix

from sklearn.metrics import ConfusionMatrixDisplay

y _train_pred = cross_val _predict(sgd clf, X train_scaled, y train, cv=3)
ConfusionMatrixDisplay.from_predictions(y_train, y _train_pred)
plt.show()

e Cell 5-5has alow . Confusion matrix | 6000
number of images
1 - S000
e Could mean the Z
model made more o i
errors there 2"
g 5 3000
. E «.
* But it could also i
. 10 W 49 17 3 & " 195 214
mean there are few : 604
| . 17 63 8 80 3 126 25 10 sEFe 44
5's in the data set . 1000
9 25 18 0 64 118 36 1 179 371 -ﬁ
0 | 2 3 4 5 6 7 8 9 0

Prédicted label

Count of Images

Normalized Confusion Matrix

ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred,

normalize="true", values_format=".0%")
plt.show()

CM normalized by row

e 5's do have more
errors

- 0.8

e Often classified as
8's

True label

0 1 2 3 4 5 6 7 8 9
Predicted label

Errors Normalized by Row

sample_weight = (y_train_pred != y_train)
ConfusionMatrixDisplay.from_predictions(y_train, y _train_pred,
sample_weight=sample_weight,
normalize="true", values_format=".0%")
plt.show()

Errors normalized by row

. IR 0% 0% 6% 1% 2% 129%10% 2% BERE 0% - 0.6
* Puts zero weight on

the correct
predictions

R 0% 0% 11% 7% 1% 13% 1%

4% 0% 129%:10% 4% 9%

_V

2% 13% 0% 0% 229 3% ¢

2% 0% 1% 0% 2% 5% 49

& W

 Many images are
incorrectly labelled
II8II

3% 17% 5% 0% 8%

True label
W

O % 49% 119% 19 129%279% 0%
7 4% 9% 9% 5% 8% 29% 1%
L 4% 9%11%20% 1% 3098 6% 2% 0% 10%

S 3% 2% 4% 8% 14% 4% 0% 219 LEd 0%
il

ETEETETEEEEE
Predicted label

Errors Normalized by Column

Errors normalized by column

* 56% of _ eid |
misclassified 7's are i L 1%14% 2%
actually 9's 2% 9% 10%12%14%13%

2% 12% 8% 12%

28% 4% 199%10%

True label

b 8% 10% 1% 129%106% 0% 1% 5%
6% 12% 6% 14% 2% 1% 0F°
2 11%18% 1% 21% 9%

14%10% 7% 13%EELS 6% 0% ﬁn% 0%

0 1 2 _ S 5 6 7 8 9
Predicted label

- 0.5

Viewing Example Images

* If the upper vertical
line in a 3 is shifted
to the left, the

k-
-
model callsita 5 3 - 3
3
3

 Data
augmentation

Woldlyo
W wo g
i T
WA O RV Y
N @ LN D
OGO (MNP
AV (NP
by O OC (P WA

* Adding shifted
and rotated

...

True label

iﬂ?ﬁﬁ;loemu 554585 5 48585 5
e oo S5 09085 H6S8 ¢
these variations 5-5 5 5 5 -5 :\5—5 S &
8§ S953 585558
S53ISS5S5i5s5855 ¢

e e 2l Sl o N e 'le ol

Multilabel Classification

Multilabel Classification

* Multiclass Classification
e Sort images in to categories
* One category per image
 Multilabel Classification
* Apply labels to images
 May apply multiple labels on the same image

Multilabel Classification

import numpy as np
from sklearn.neighbors import KNeighborsClassifier

y_train_large = (y_train >= '7")
y_train_odd = (y_train.astype('int8') % 2 == 1)
y multilabel = np.c_[y_train_large, y_train_odd]

knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train, y_multilabel)

* [wo labels per image
e Digitis large (7, 8, or 9)
e Digitisodd (1, 3, 5, 7, or 9)

|t correctly predicts that 5 is not large, but is odd

>>> knn_clf.predict([some_digit])
array([[False, True]])

Evaluating a Multilabel Classifier

>>> y_train_knn_pred = cross_val _predict(knn_clf, X_train, y_multilabel, cv=3)
>>> f1 score(y multilabel, y train_knn _pred, average="macro")
0.976410265560605

* Average F1 score across all labels

* Appropriate if all labels are equally important

Multilabel Classification with SVC

 SVC does not natively support multilabel classification
e One strategy would be to train one model per label
 But that would miss dependency between the labels

* Large (7, 8, or 9) images are more likely to also be Odd
* ChainClassifier can train models in sequence

* Feeding each model labels from previous models

Multioutput Classification

Multioutput Classification

* A generalization of multilabel classification

 Each label can have more than two possible values
 Example: removing noise from images

* |Input is many pixels, each from 0 to 255

e QOutput is many pixels, each from 0 to 255

Figure 3-12. A noisy image (left) and the target clean image (right)

