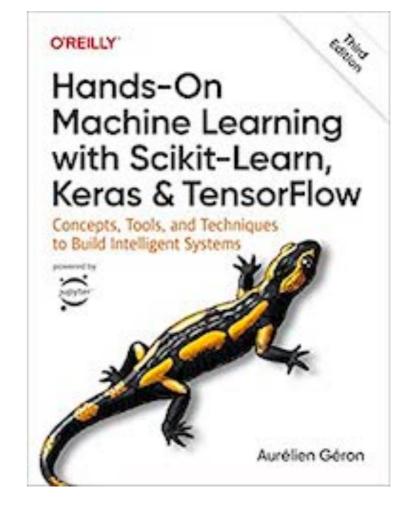
Machine Learning Security

4 Training Models



Made Aug 26, 2023

Topics

- Linear Regression
- Gradient Descent
- Polynomial Regression
- Learning Curves
- Regularized Linear Models
- Logistic Regression

Linear Regression

Two Ways to Train

- Closed-form equation
 - Directly compute parameters for best fit
- Gradient Descent (GD)
 - Iterative process
 - Gradually tweak parameters to minimize the cost function
 - Types of gradient descent
 - Batch GD
 - Mini-batch GD
 - Stochastic GD

Linear Regression

life_satisfaction = $\theta_0 + \theta_1 \times GDP_per_capita$

Equation 4-1. Linear regression model prediction

 $\hat{y}= heta_0+ heta_1x_1+ heta_2x_2+\dots+ heta_nx_n$

• The prediction depends linearly on the inputs (x_i)

Cost Function

Equation 4-3. MSE cost function for a linear regression model

$$MSE\left(\mathbf{X}, h_{\boldsymbol{\theta}}\right) = \frac{1}{m} \sum_{i=1}^{m} \left(\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}^{(i)} - y^{(i)}\right)^{2}$$

• Mean Squared Error

The Normal Equation

Equation 4-4. Normal equation

$$\widehat{oldsymbol{ heta}} = \left(\mathbf{X}^{\intercal} \mathbf{X}
ight)^{-1} \, \mathbf{X}^{\intercal} \; \mathbf{y}$$

In this equation:

- $\widehat{\theta}$ is the value of θ that minimizes the cost function.
- y is the vector of target values containing y(1) to y(m).

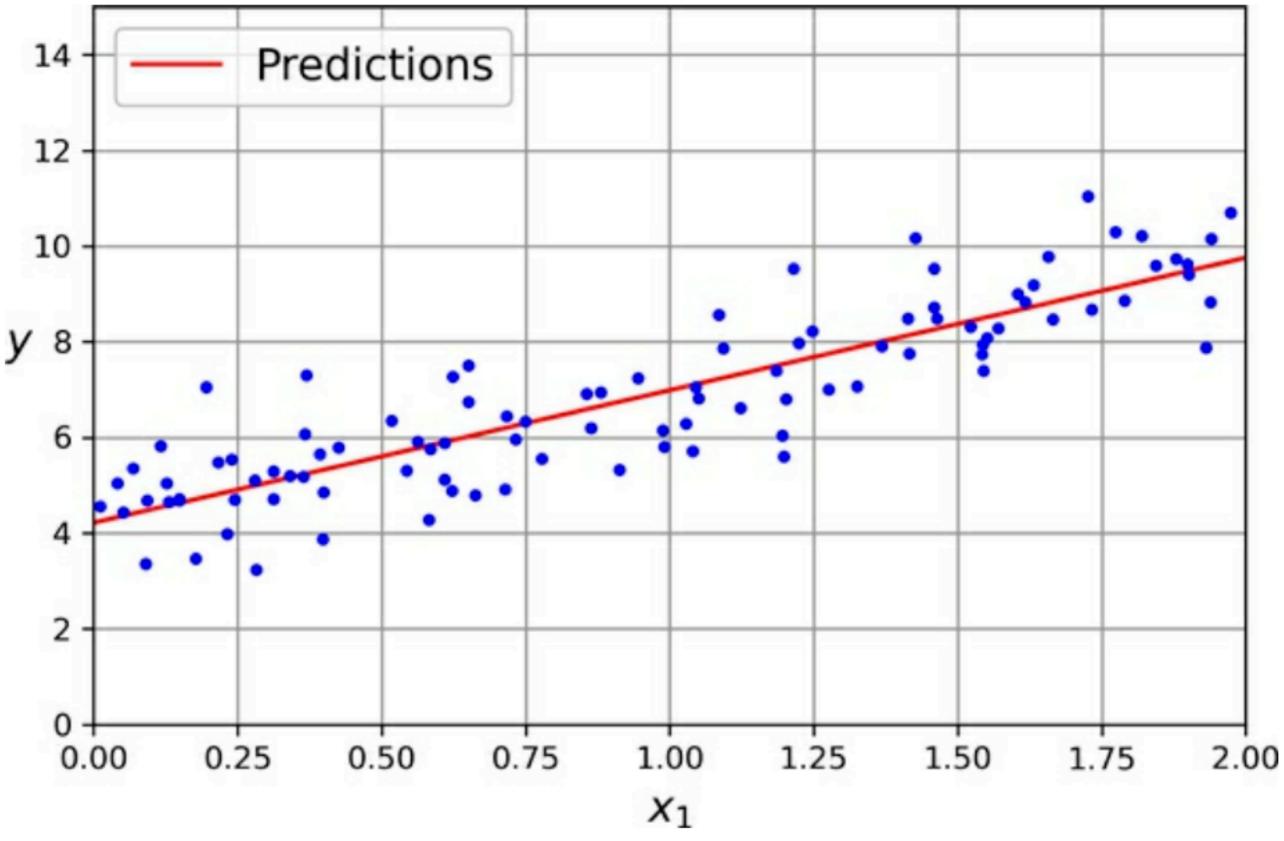


Figure 4-2. Linear regression model predictions

Computational Complexity

- Computes the matrix inverse of X^TX
 - (*n* + 1) x (*n* + 1) for *n* features
- Computational complexity is **O**(**n**^{2.4}) to **O**(**n**³)
 - Doubling *n* increases computation time by a factor of 5 to 8
- Once the model is trained, prediction is fast
 - Complexity is linear in number of predictions and number of features

When the Closed-form Equation Method Fails

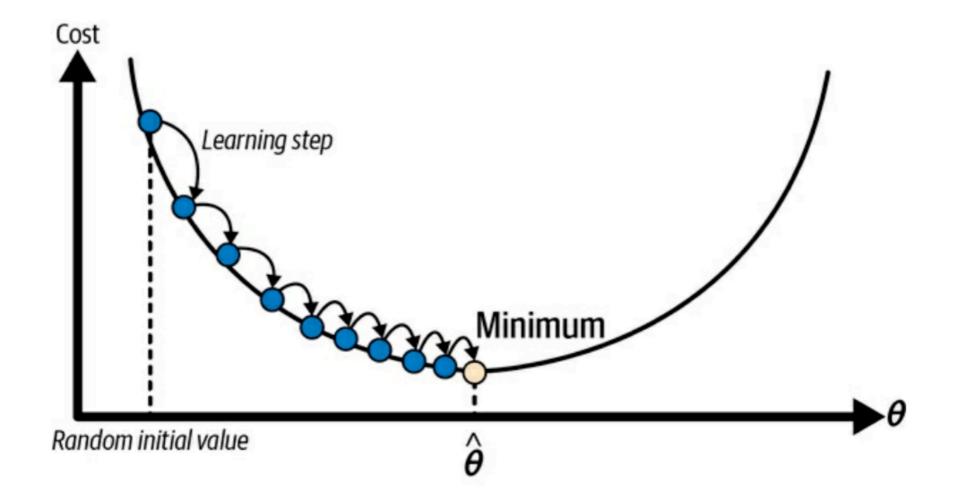
- There are a large number of features
- There are too many training instances to fit in memory

• For these cases, use Gradient Descent

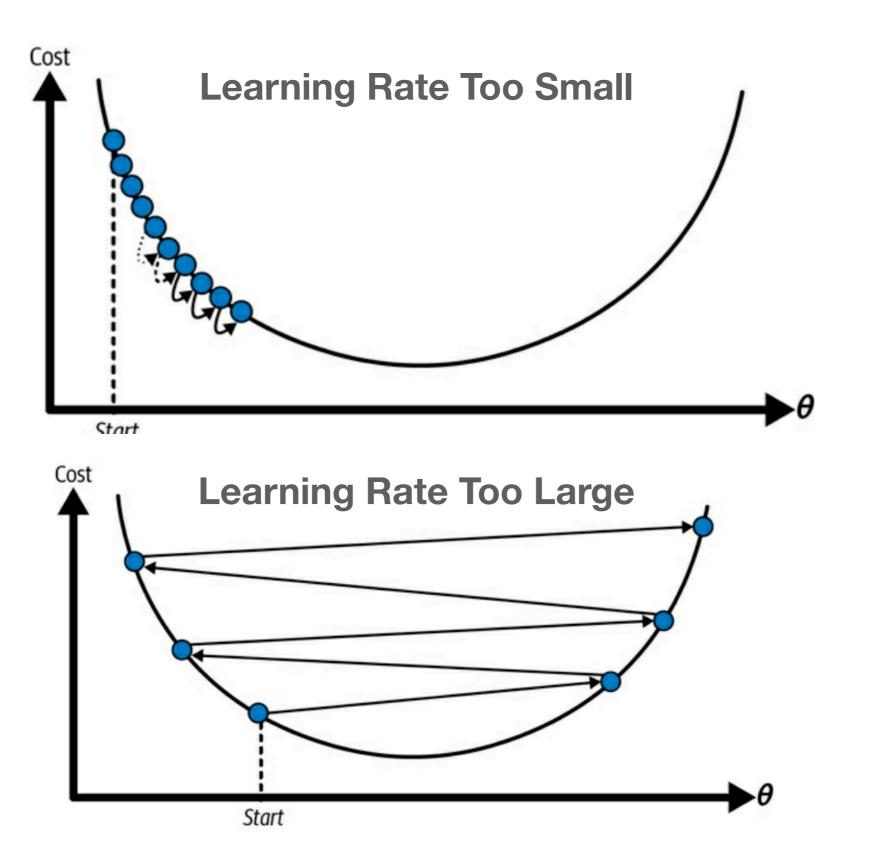
Gradient Descent

How Gradient Descent Works

- Start with random parameters
- Step in direction of steepest descent



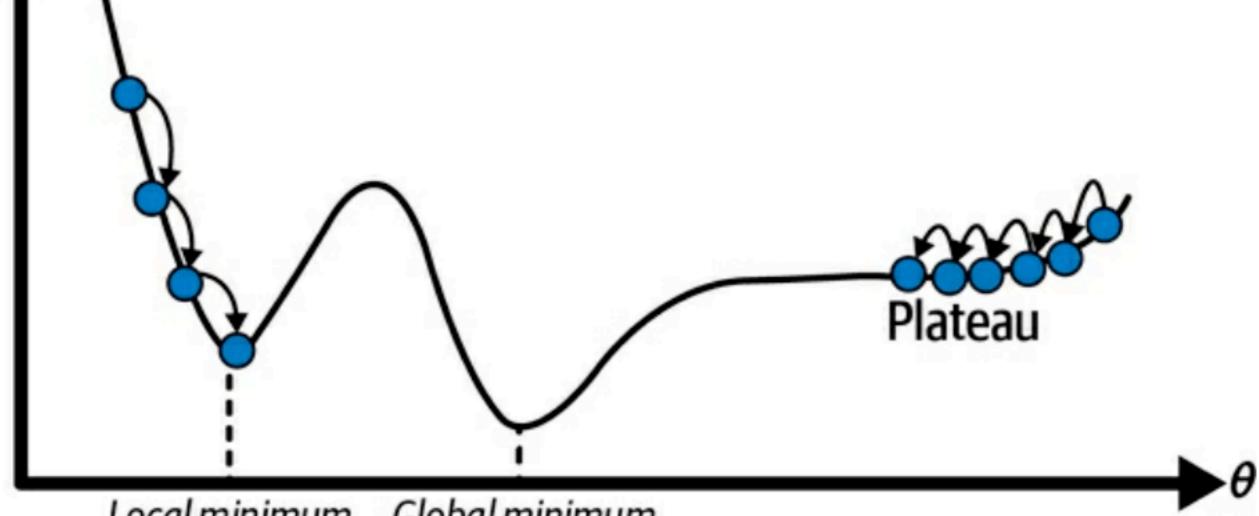
Learning Rate



Pitfalls

Cost

- Converge to a *local minimum*
- Waste time on a *plateu*



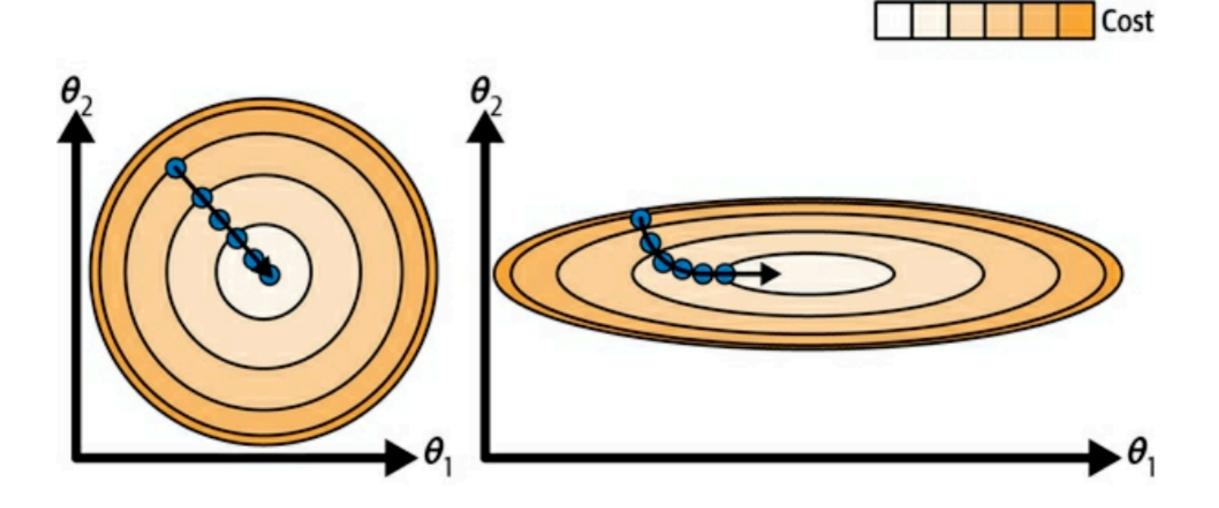
Local minimum Global minimum

Mean Squared Error

- A convex function
 - No local minima, just one global minimum
- Continuous function
 - Slope never changes abruptly

Feature Scaling

• Converges most rapidly when all features have the same scale



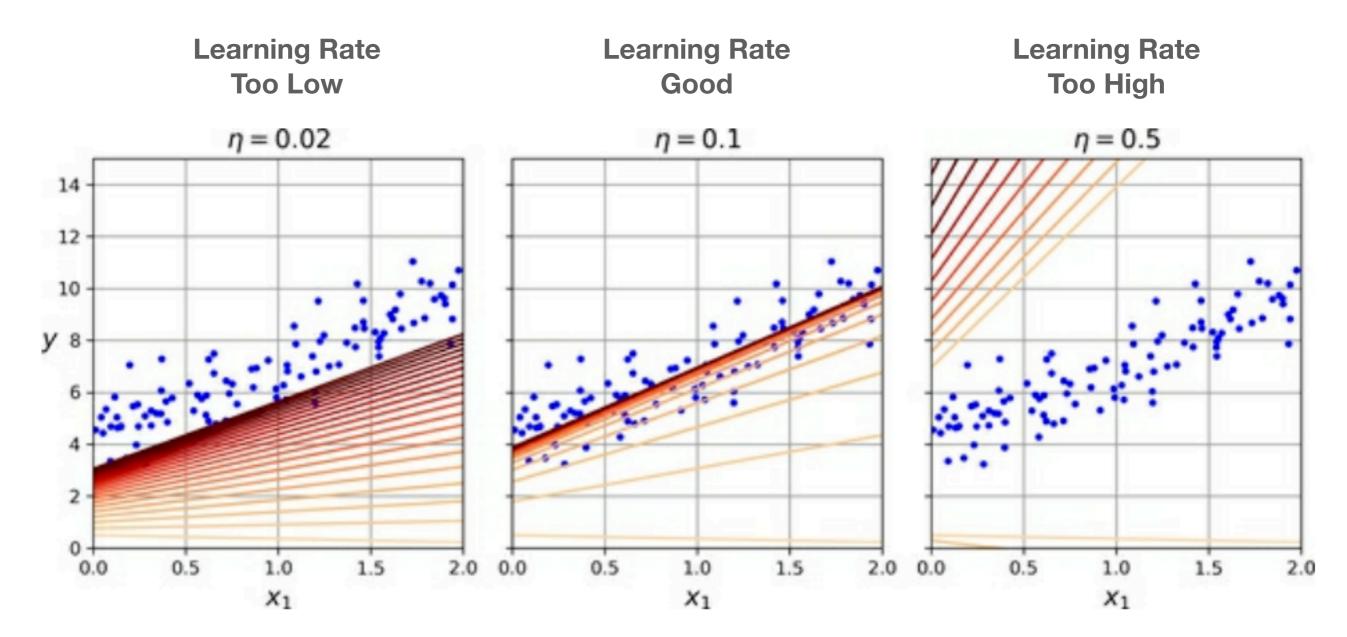
Batch Gradient Descent

Equation 4-5. Partial derivatives of the cost function

$$rac{\partial}{\partial heta_j} \mathrm{MSE}\left(oldsymbol{ heta}
ight) = rac{2}{m} \sum_{i=1}^m \left(oldsymbol{ heta}^\intercal \mathbf{x}^{(i)} - y^{(i)}
ight) \, x_j^{(i)}$$

- The slope of the descent can be easily computed for linear models
- It uses the whole training data at each step
 - Very slow on large training sets
- Scales linearly with number of features
 - Much faster than Normal equation

Gradient Descent with Various Learning Rates



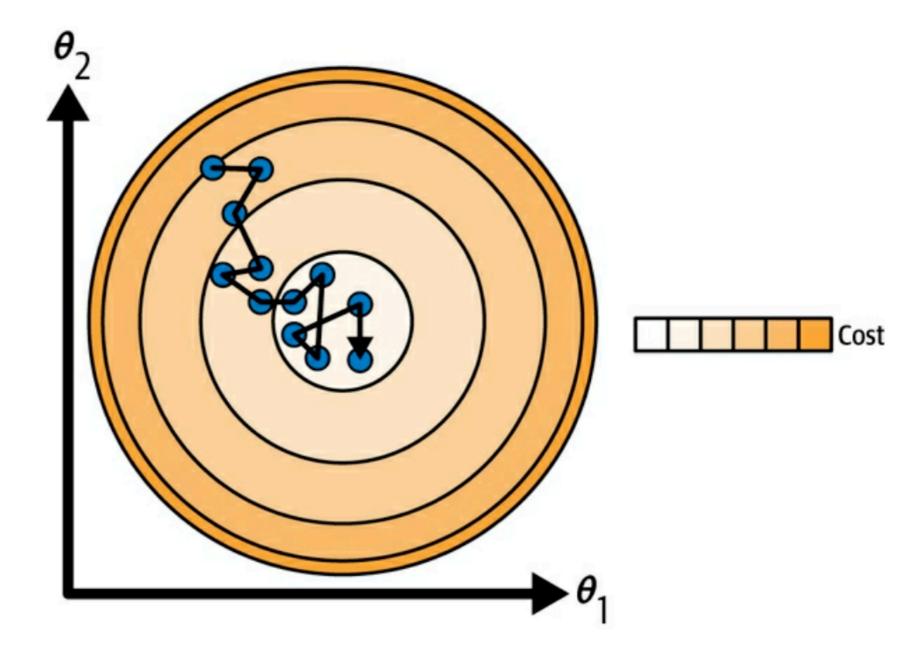
• Find the best learning rate with a grid search

Stochastic Gradient Descent (SGD)

- Gradient descent uses the whole training set for each step
- Stochastic Gradient Descent
 - Picks a random instance in the training set at every step
 - Computes the gradient from that instance
 - Much faster, and can use huge training sets

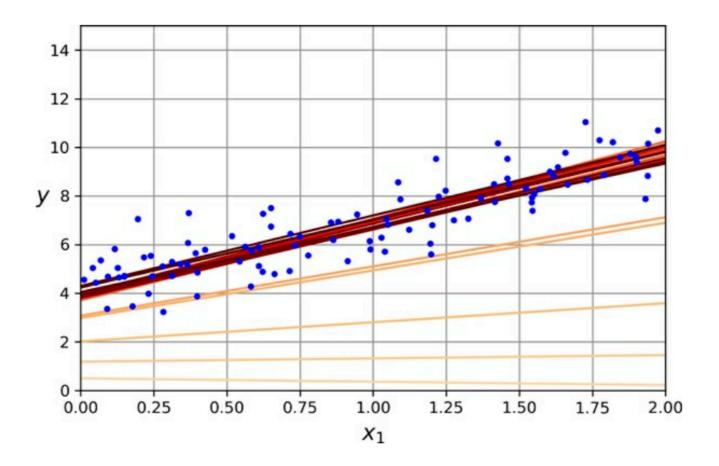
Stochastic Gradient Descent

- Cost does not decrease with each step
- Bounces around randomly
- Decreases on average
- Never settles down to minimum
- If cost function is irregular, this can help it jump out of local minima



Learning Schedule

- Gradually decrease learning rate
 - Causes stochastic gradient descent to settle at the global minimum
 - Similar to simulated annealing

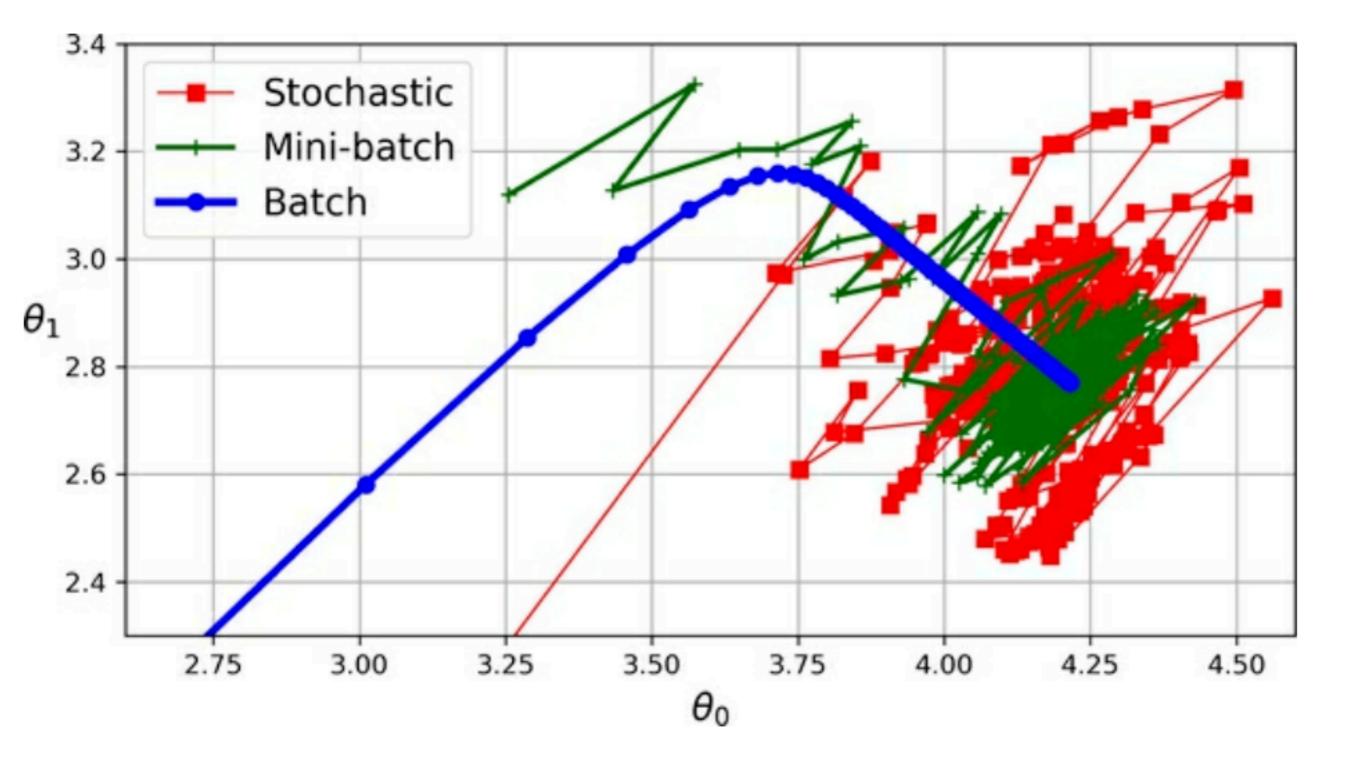


Shuffling

- If the training set is sorted
 - SGD will first use one category of data, then switch to another
 - It won't converge to the global minimum
- To avoid this, shuffle the training data at each epoch
 - Or pick each instance randomly

Mini-Batch Gradient Descent

- At each step, compute the gradient using small random sets of training instances (called *mini-batches*)
- Gets a performance boost from hardware optimization of matrix operatins, especially GPUs
- Less erratic than SGD
 - Especially with large mini-batches
 - But it may get stuck in local minima



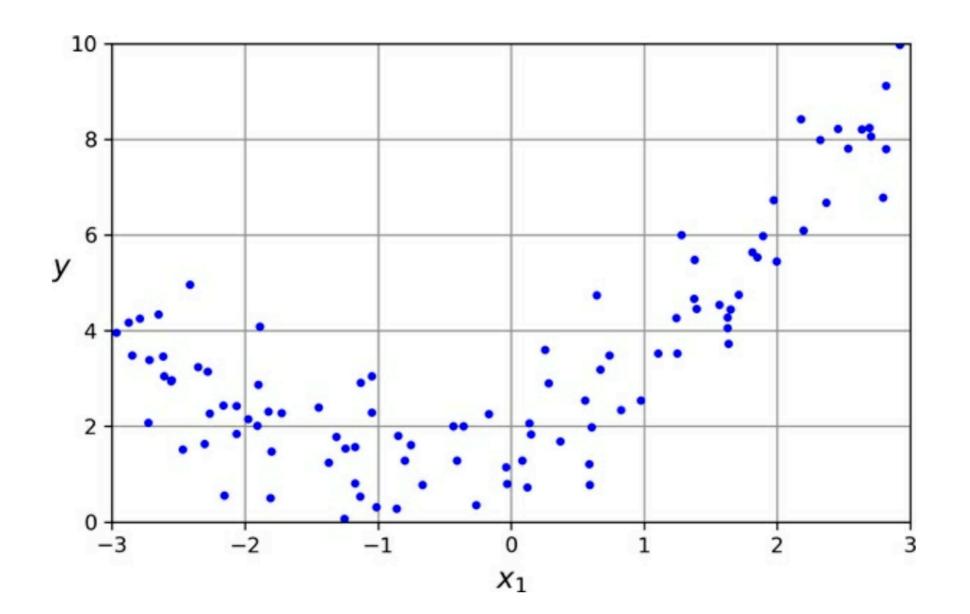
Polynomial Regression

Use a Linear Model to Fit Nonlinear Data

- Add powers of features as new features
- Train a linear model on the new features

Quadratic Data

```
np.random.seed(42)
m = 100
X = 6 * np.random.rand(m, 1) - 3
y = 0.5 * X ** 2 + X + 2 + np.random.randn(m, 1)
```



Add Squared Feature as a New Feature

```
>>> from sklearn.preprocessing import PolynomialFeatures
>>> poly_features = PolynomialFeatures(degree=2, include_bias=False)
>>> X_poly = poly_features.fit_transform(X)
>>> X[0]
array([-0.75275929])
>>> X_poly[0]
array([-0.75275929, 0.56664654])
```

- Original X has only one value
- X_poly has two values per instance

Fit Linear Regression to Extended Training Data

>>> lin_reg = LinearRegression()
>>> lin_reg.fit(X_poly, y)
>>> lin_reg.intercept_, lin_reg.coef_
(array([1.78134581]), array([[0.93366893, 0.56456263]]))

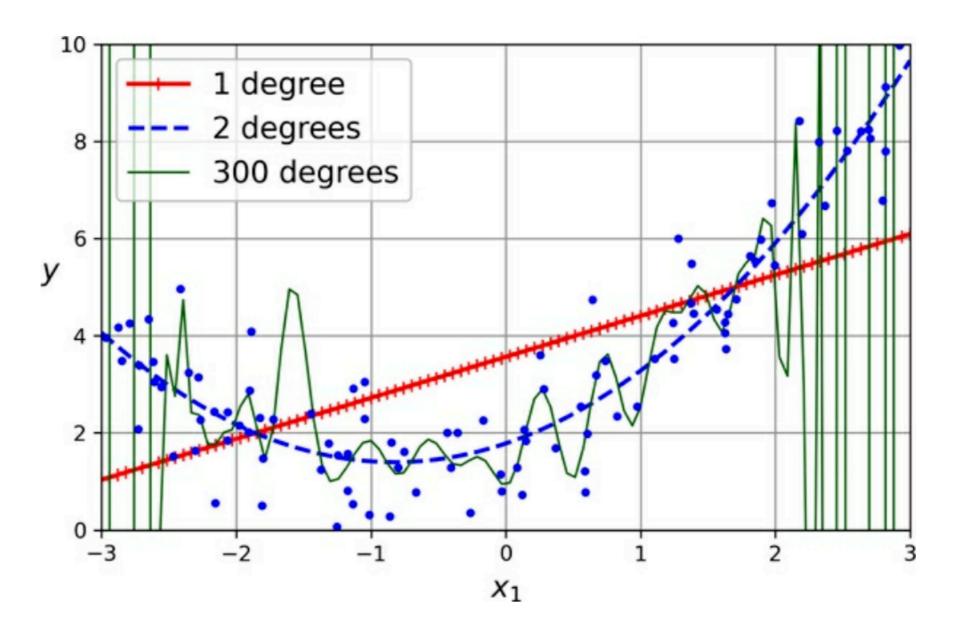
Not bad: the model estimates $\hat{y} = 0.56x_1^2 + 0.93x_1 + 1.78$ when in fact the original function was $y = 0.5x_1^2 + 1.0x_1 + 2.0 + \text{Gaussian noise}$.

Ch 4a

Learning Curves

Various Polynomials

- Line underfits the data (1 degree)
- 300 degrees overfits the data
- We could evaluate these models with crossvalidation

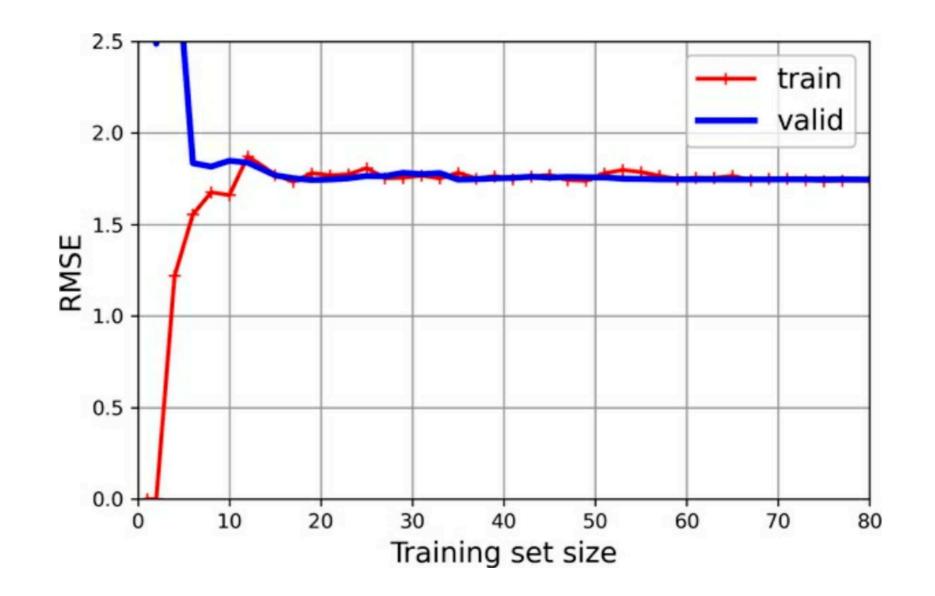


Learning Curves

- Another way to measure a model's performance
- Plot training error and validation error
 - As a function of training iteration
- If a model canot be trained incrementally, use gradually larger subsets of the training data

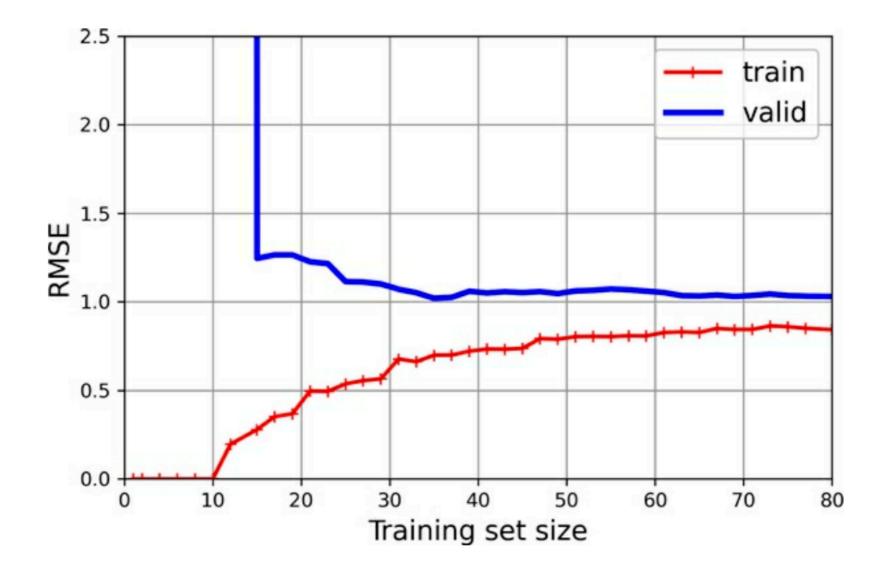
Underfitting: Linear Model, Quadratic Data

- Model can fit one or two training instances perfectly
- Model plateaus and stops improving when more data is added



Overfitting: 10th Degree Model, Quadratic Data

- Training error is always less than validation error
- Adding a lot more data can correct the overfitting



Types of Error

• Bias

- Caused by wrong assumptions, underfitting
- Such as using a linear model to fit quadratic data

Variance

- Model with too many parameters
- Overfitting the training data

Irreducible error

- Noise in the data
- Increasing a model's complexity will increase variance and reduce bias

Regularized Linear Models

Regularizing the Model

- Reduce the number of polynomial degrees
- For a linear model, constrain the weights of the model
- Three ways
 - Ridge regression
 - Lasoo regression
 - Elastic net regression

Ridge Regression

Equation 4-8. Ridge regression cost function

$$J(\boldsymbol{\theta}) = \mathrm{MSE}(\boldsymbol{\theta}) + rac{lpha}{m} \sum_{i=1}^{n} {\theta_i}^2$$

- Squares of parameters are added to the cost function
- Model will keep the weights as small as possible
- Hyperparameter α controls amount of regularization
 - α of zero is just linear regression
 - Large α makes all weights small
- This is called the ℓ_2 norm, using the square of the weights

Various Levels of Ridge Regularization

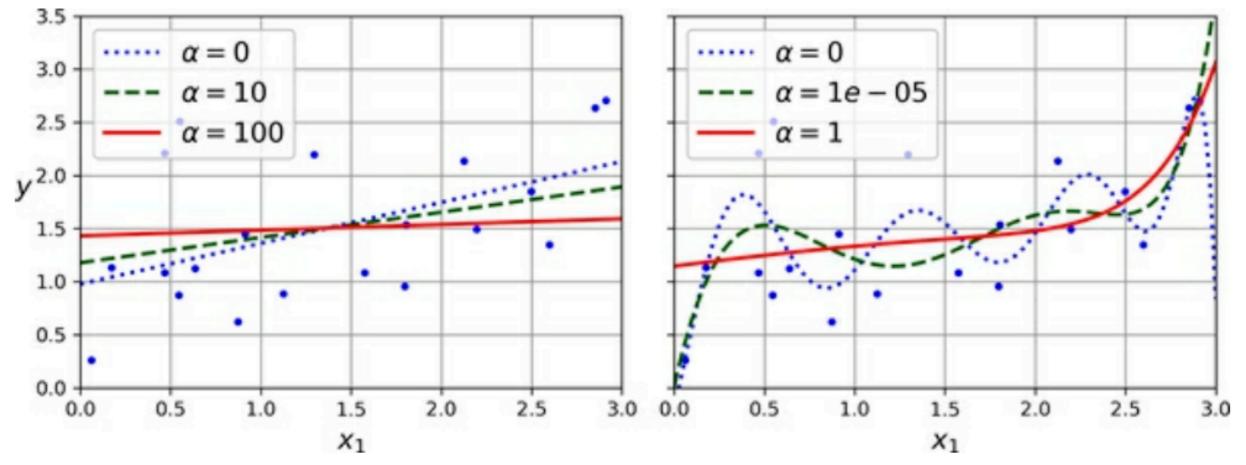


Figure 4-17. Linear (left) and a polynomial (right) models, both with various levels of ridge regularization

Lasso Regression

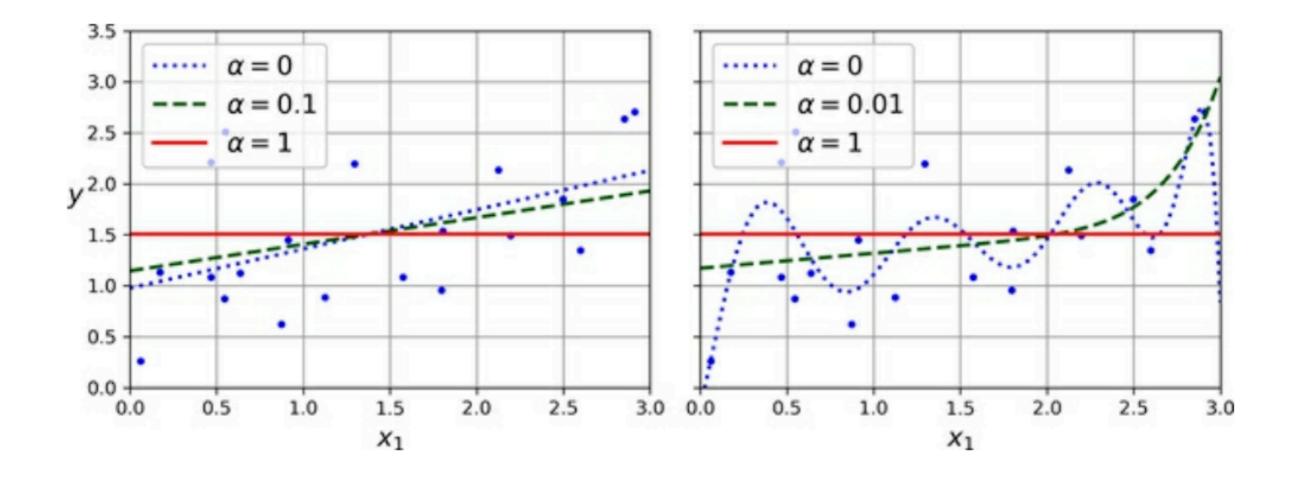
Equation 4-10. Lasso regression cost function

$$J(oldsymbol{ heta}) = \mathrm{MSE}(oldsymbol{ heta}) + 2lpha \sum_{i=1}^n | heta_i|$$

- Least absolute shrinkage and selection operator regression
- Uses the ℓ_1 norm, using the absolute value of the weights

Lasso Regression

• Tends to eliminate the weights of the least important features



Elastic Net Regression

Equation 4-12. Elastic net cost function

 $J(oldsymbol{ heta}) = ext{MSE}(oldsymbol{ heta}) + r\left(2lpha\sum_{i=1}^n | heta_i|
ight) + \left(1-r
ight)\left(rac{lpha}{m}\sum_{i=1}^n heta_i^2
ight)$

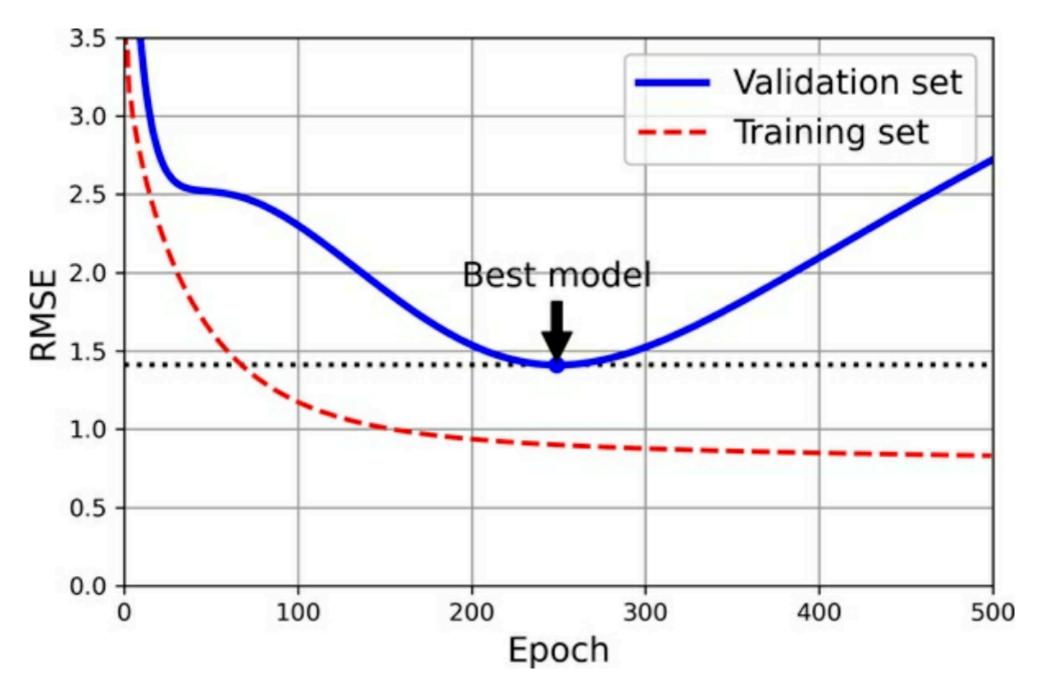
- Middle ground between ridge regression and lasoo regression
- Uses both ℓ_1 and ℓ_2 norms

Which to Use?

- Linear regression without regularization
 - Usually a bad choice
- Ridge regression is a good default
- If you suspect that only a few features are useful,
 - Use lasoo or elastic net
- Elastic net is preferred over lasoo
 - Lasoo can behave erratically
 - When the number of features is larger than the number of training instances, or
 - When several features are strongly correlated

Early Stopping

- A way to regularize gradient descent
- Stop training as soon as the validation error reaches a minimum



Logistic Regression

Classification

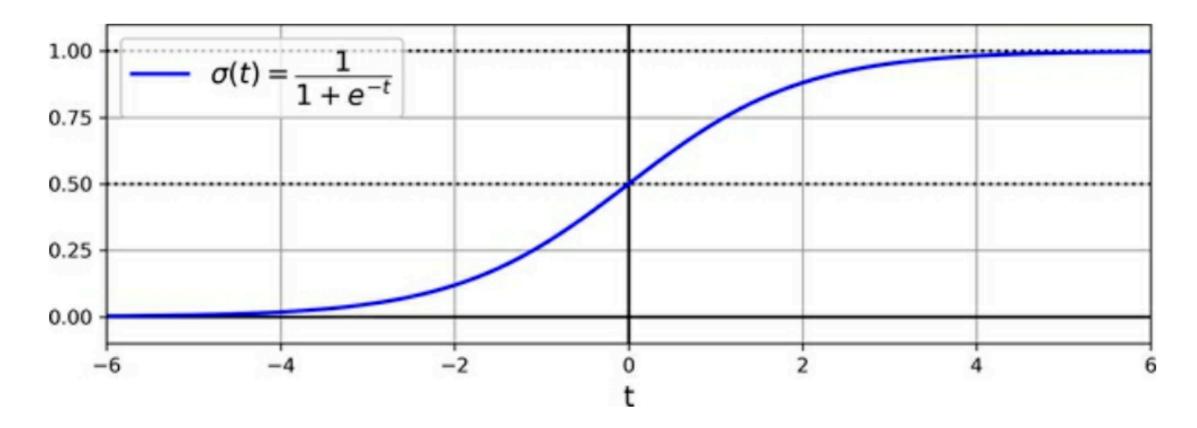
- A way to use a regression algorithm for classification
- Output of the regression measures probability of a classification
 - Such as whether an email is spam
- If the output is greater than a threshold (typically 50%)
 - The classification is *positive class* (True)

Logistic Function

Logistic regression model estimated probability (vectorized form)

$$\hat{p} = h_{\theta} \left(\mathbf{x} \right) = \sigma \left(\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x} \right)$$

$$\sigma\left(t
ight)=rac{1}{1+\exp\left(-t
ight)}$$



Cost Function

Equation 4-16. Cost function of a single training instance

$$c(oldsymbol{ heta}) = egin{cases} -\log(\hat{p}) & ext{if } y = 1 \ -\log(1-\hat{p}) & ext{if } y = 0 \end{cases}$$

- If model has a low probability for a positive instance
 - p is near zero, top row
 - Large cost
- If model has high probability for a negative instance
 - p is near one, bottom row
 - Large cost

Logistic Cost Function

- No closed-form solution
- But cost function is convex
- Gradient descent works well

Example: Iris Dataset

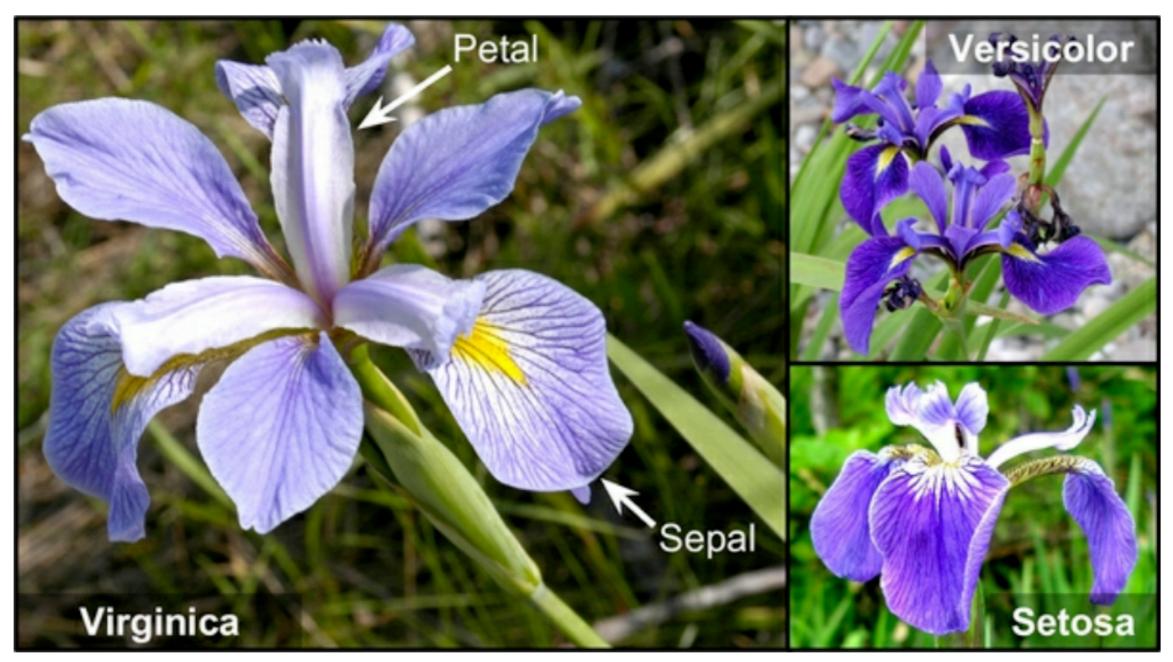


Figure 4-22. Flowers of three iris plant species 12

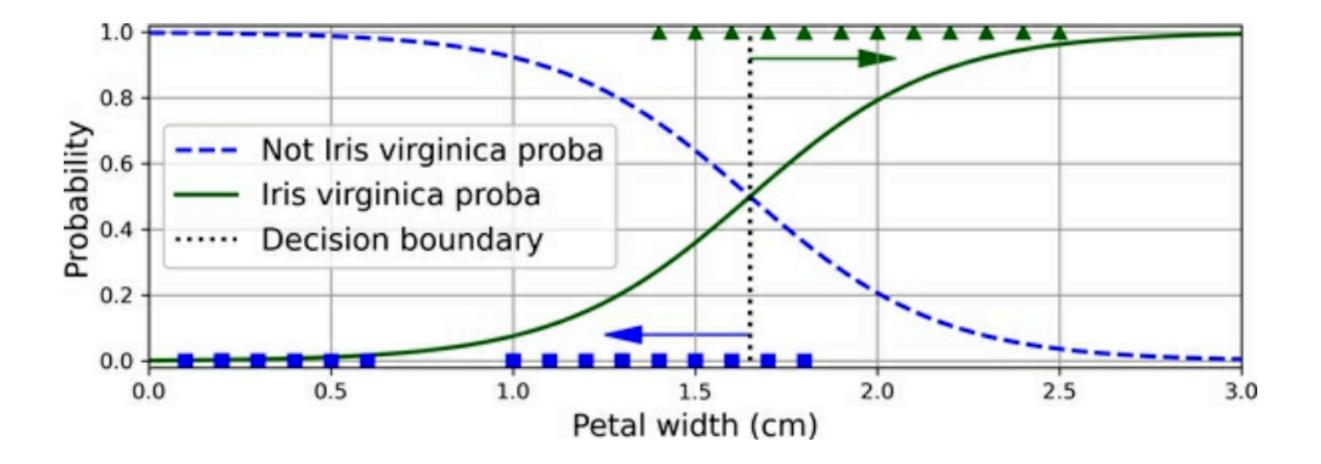
Three Features

```
>>> from sklearn.datasets import load_iris
>>> iris = load_iris(as_frame=True)
>>> list(iris)
['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names',
 'filename', 'data_module']
>>> iris.data.head(3)
   sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
0
                 5.1
                                   3.5
                                                      1.4
                                                                        0.2
                 4.9
                                   3.0
                                                      1.4
                                                                        0.2
1
2
                 4.7
                                   3.2
                                                      1.3
                                                                        0.2
```

- Sepal width
- Petal length
- Petal width

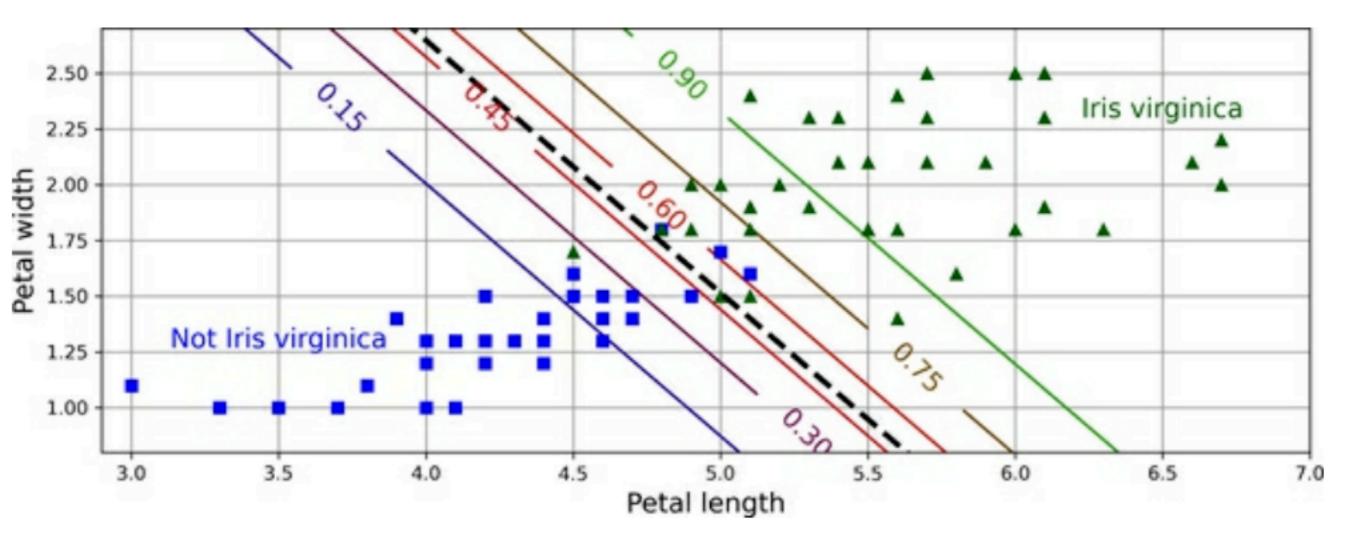
Using Only Petal Width

- Iris virginica proba has wider petals
- But there's considerable overlap



Using Petal Length and Petal Width

• Dashed line is 50% probability



Ch 4b