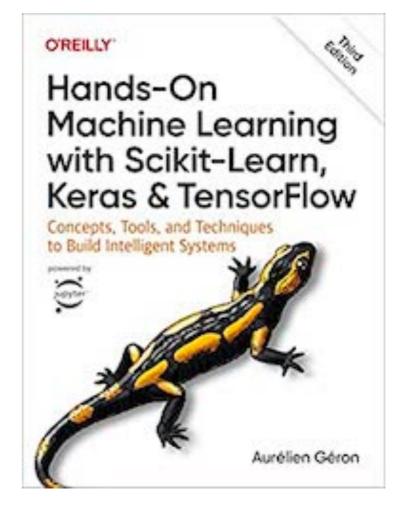
Machine Learning Security

5 Support Vector Machines



Updated Sep 23, 2023

Topics

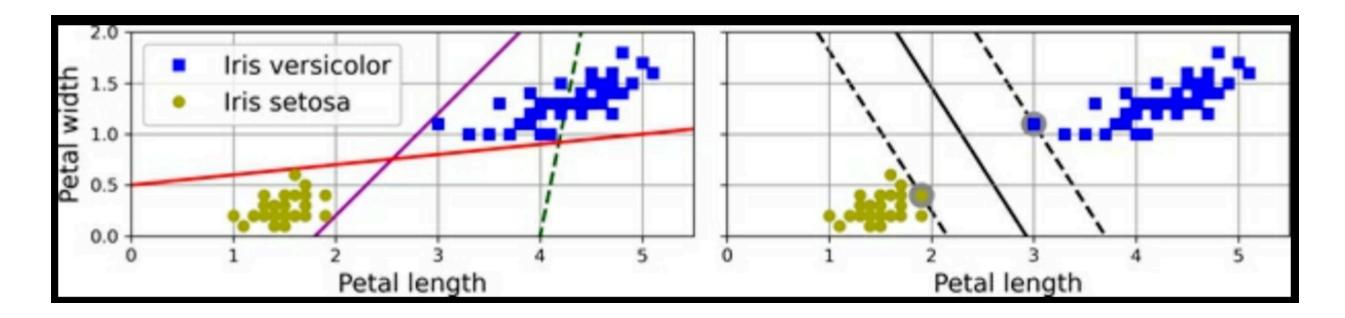
- Linear SVM Classification
- Nonlinear SVM Classification
- SVM Regression
- Under the Hood of Linear SVM Classifiers
- The Dual Problem

Support Vector Machines (SVMs)

- Powerful and versatile machine learning models
- Can perform
 - Linear and nonlinear classification
 - Regression
 - Novelty detection
- BUT they don't scale well to very large datasets

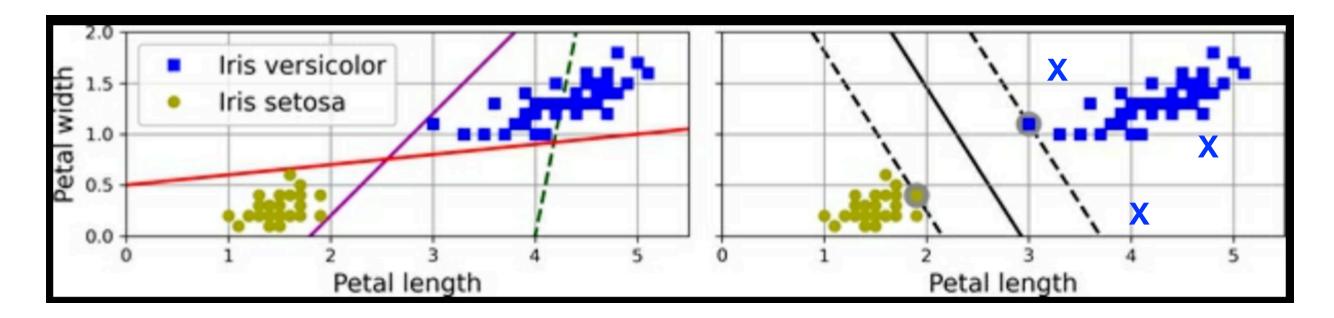
Linear SVM Classification

Large Margin Classification



- These classes are *linearly separable*
- Either of the solid lines on the left side work
 - But won't generalize well because they are close to instances
- The line on the right side is the decision boundary of an SVM classifier
 - Widest possible margin

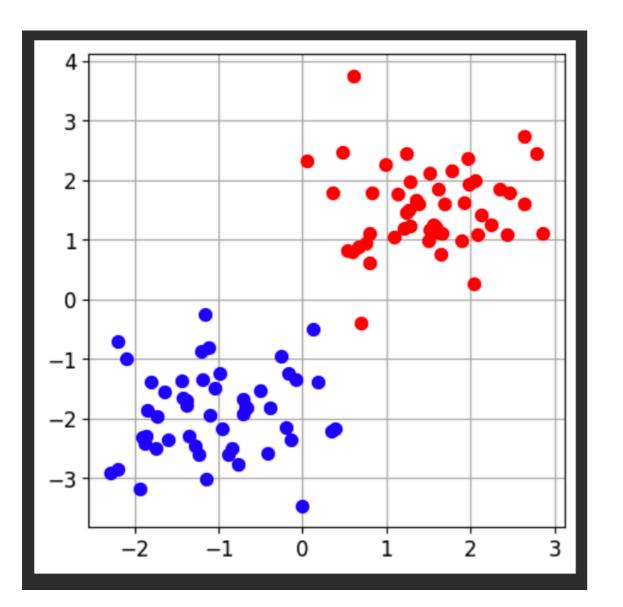
Large Margin Classification

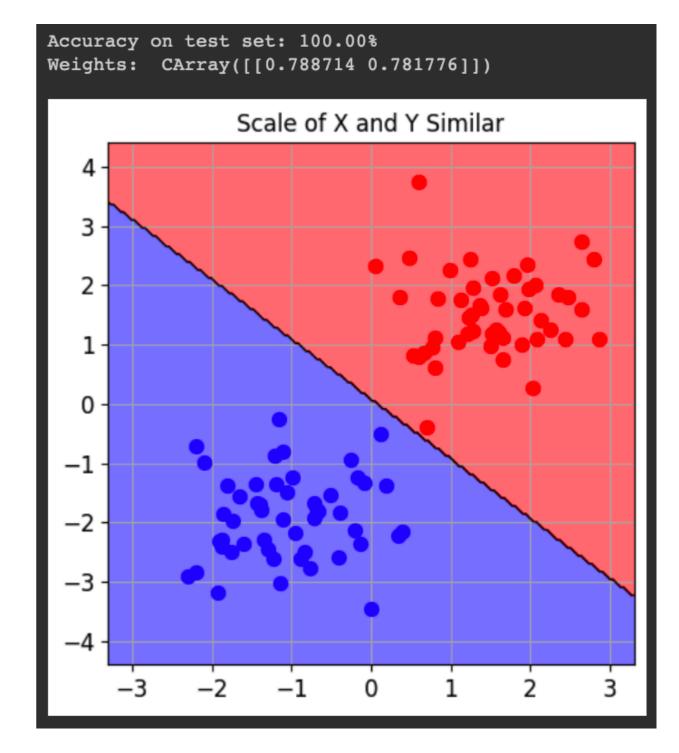


- Adding more instances won't affect the decision boundary
 - Unless they are inside the existing "street"
- The boundary is fully determined by the instances on the edge of the street
 - Those instances are the *support vectors*

ML 112: Support Vector Machines

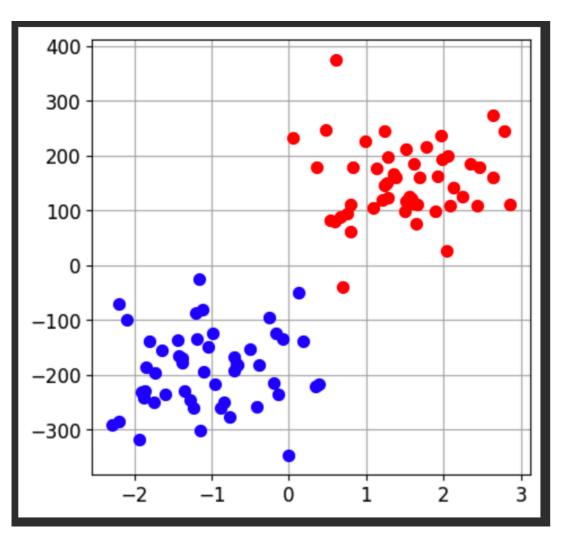
- Task: Classify these dots
- Linear SVM works well

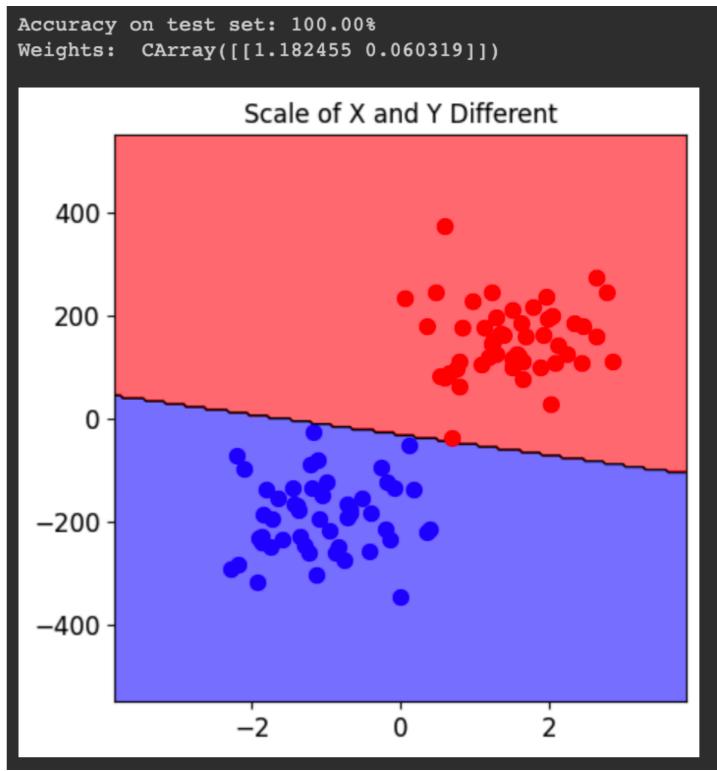




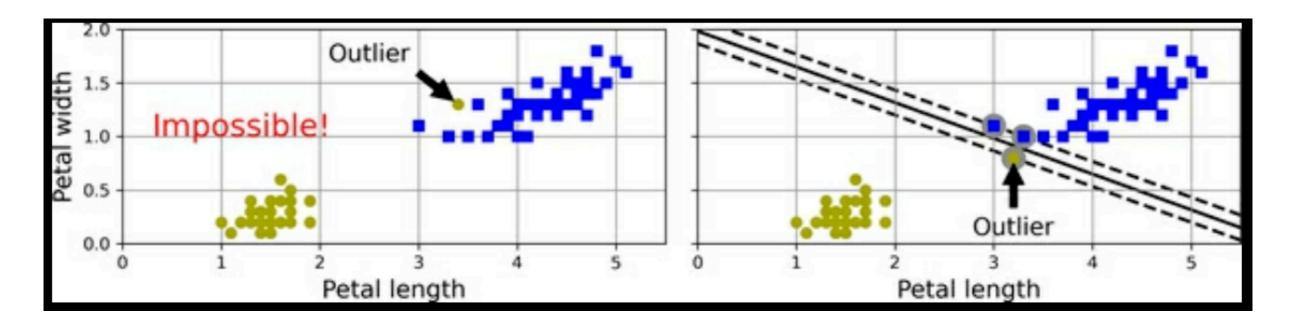
Scaling Changes the Fit

- Multiplying Y by 100
- Makes vertical distance count more



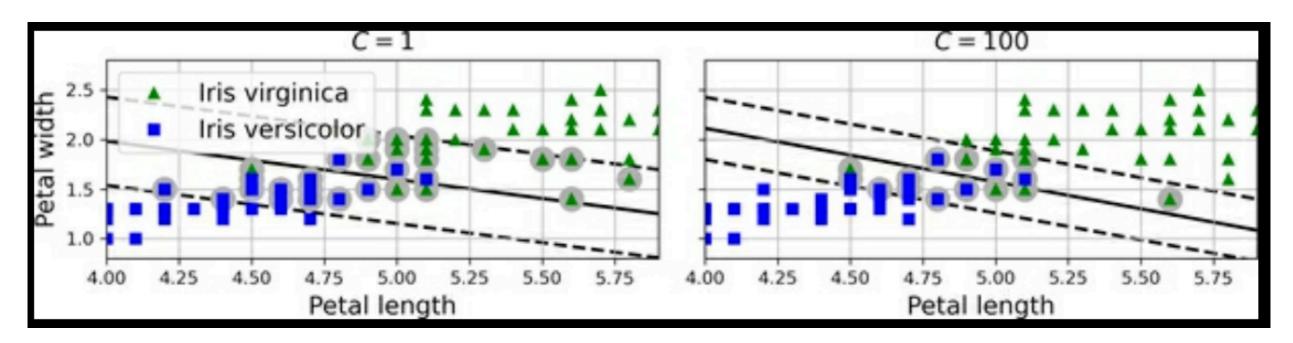


Hard Margin Classification



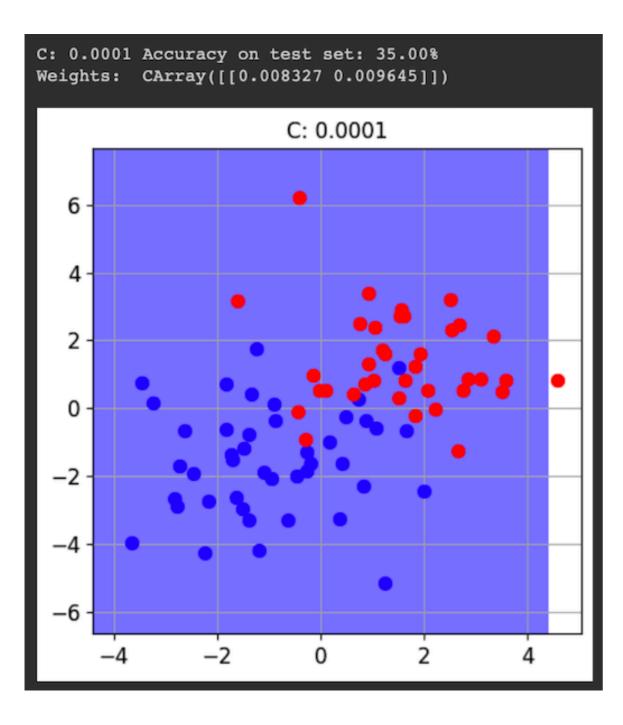
- Sensitive to outliers
- On the left, one outlier makes the solution impossible
- On the right, one outlier changes the decision line a lot

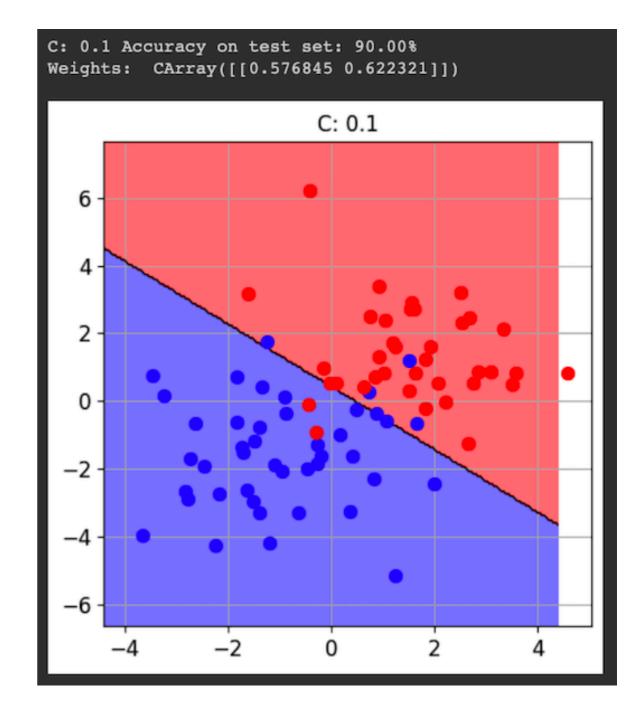
Soft Margin Classification



- Keep the street as wide as possible, while limiting the number of margin violations
- Regularization hyperparameter C
 - Low C makes the street larger, with more margin violations
 - More instances supporting the street
 - Less chance of overfitting
 - But model may underfit

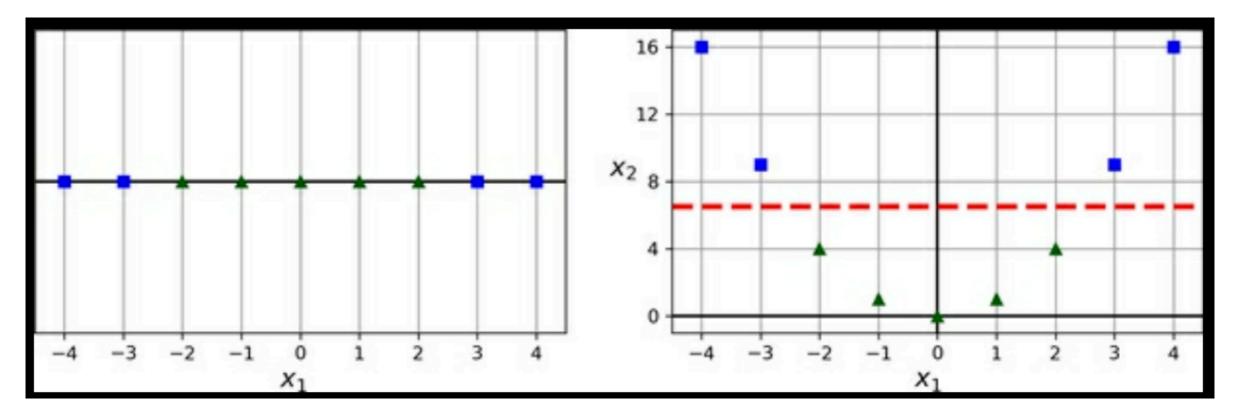
ML 112: Support Vector Machines





Nonlinear SVM Classification

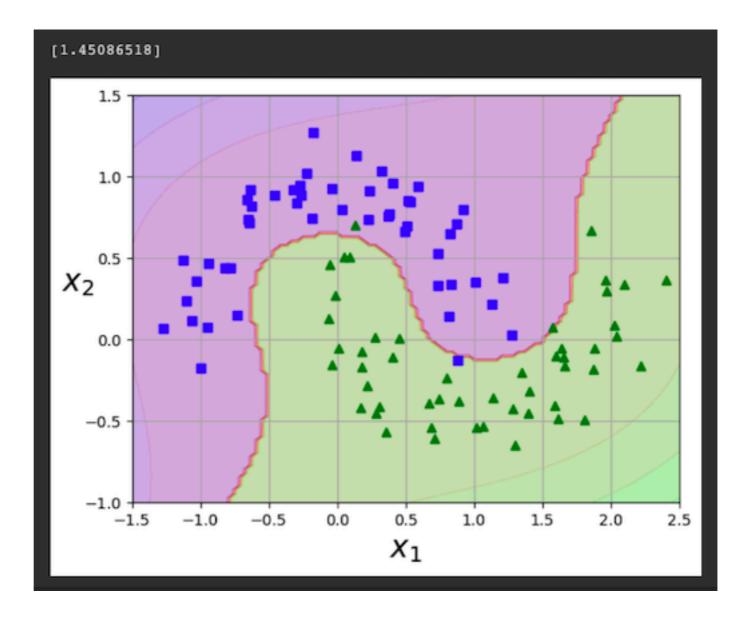
Adding Features



- With only x_1 , a line can't separate the green and blue dots
- Adding x₁² makes an SVM possible

Adding Features

 Adding polynomial features up to degree 3 works for the "moons" data

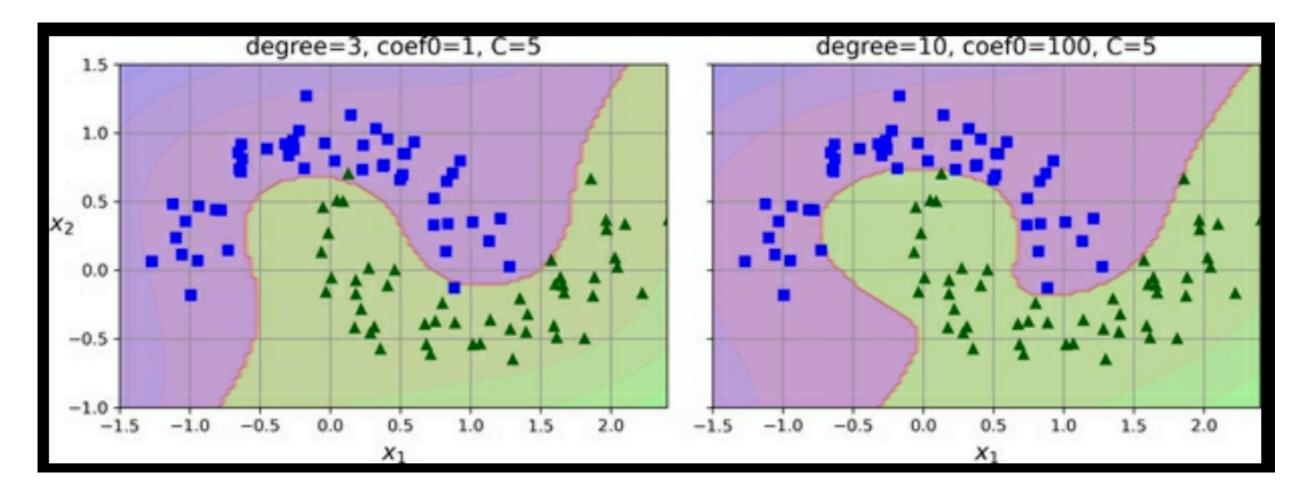


The Kernel Trick

- Gets same result as adding many polynomial features
 - Without actually increasing the number of features
- Implemented by the SVC class

```
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
poly_kernel_svm_clf = Pipeline([
        ("scaler", StandardScaler()),
        ("svm_clf", SVC(kernel="poly", degree=3, coef0=1, C=5))
    ])
poly_kernel_svm_clf.fit(X, y)
```

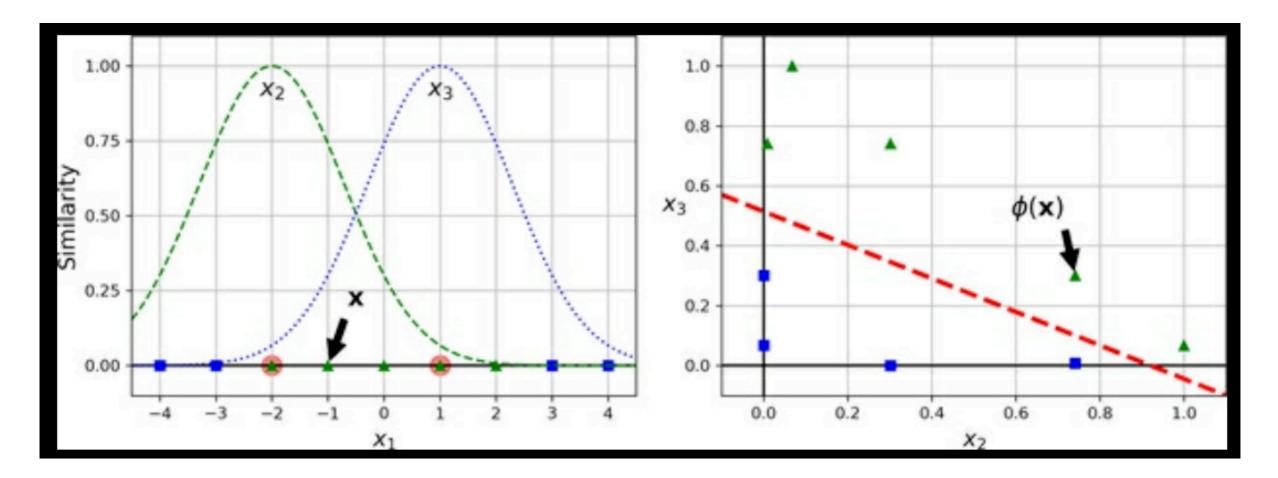
Polynomial Kernel



- Hyperparameter coef0 controls how much the model is influenced by high-degree terms versus low-degree terms
- As before, low C makes the street wider, with more margin violations and a chance of underfitting

Similarity Features

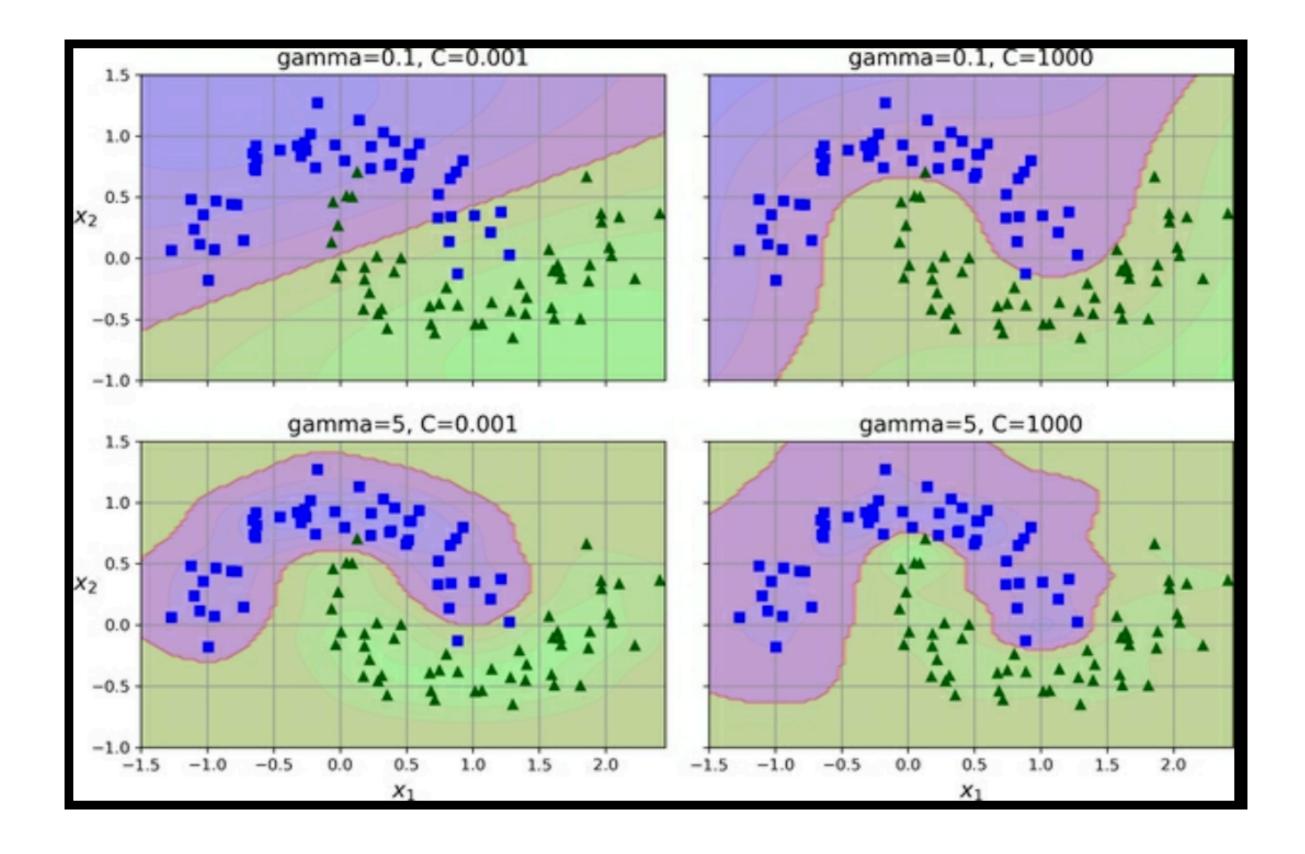
- Similarity function measures how much each instance resembles a *landmark*
- Here we use the Gaussian RBF (Radial Basis Function)



Gaussian RBF Kernel

- Hyperparameter gamma controls the width of the bell function
 - Lower gamma means narrower
 - If your model is overfitting, reduce gamma
- As before, reducing **C** also reduces overfitting

Gaussian RBF Kernel



String Kernel

- Can be used when classifying text documents or DNA sequences
- Using Levenshtein distance
 - The minimum number of single-character edits required to change one word into the other

Choosing a Kernel

- Always try linear kernel first
- Then try Gaussian RBF kernel
- Then others, such as polynomial kernel

Computational Complexity

- For *m* training instances and *n* features
- LinearSVC is fast, unless you require high precision (low ε or **tol**)

Class	Time complexity	Out-of-core support	Scaling required	Kernel trick
LinearSVC	O(m × n)	No	Yes	No
SVC	O(m ² × n) to O(m ³ × n)	No	Yes	Yes
SGDClassifier	O(m × n)	Yes	Yes	No

Ch 5a

SVM Regression

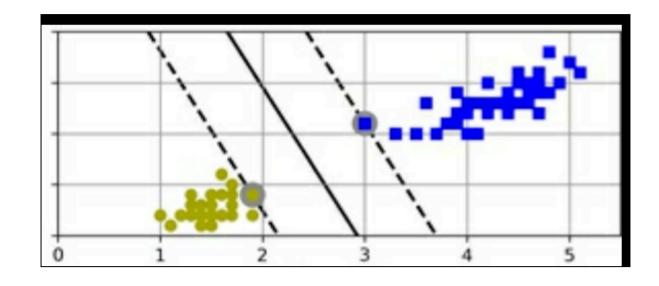
SVM Regression

SVM classification

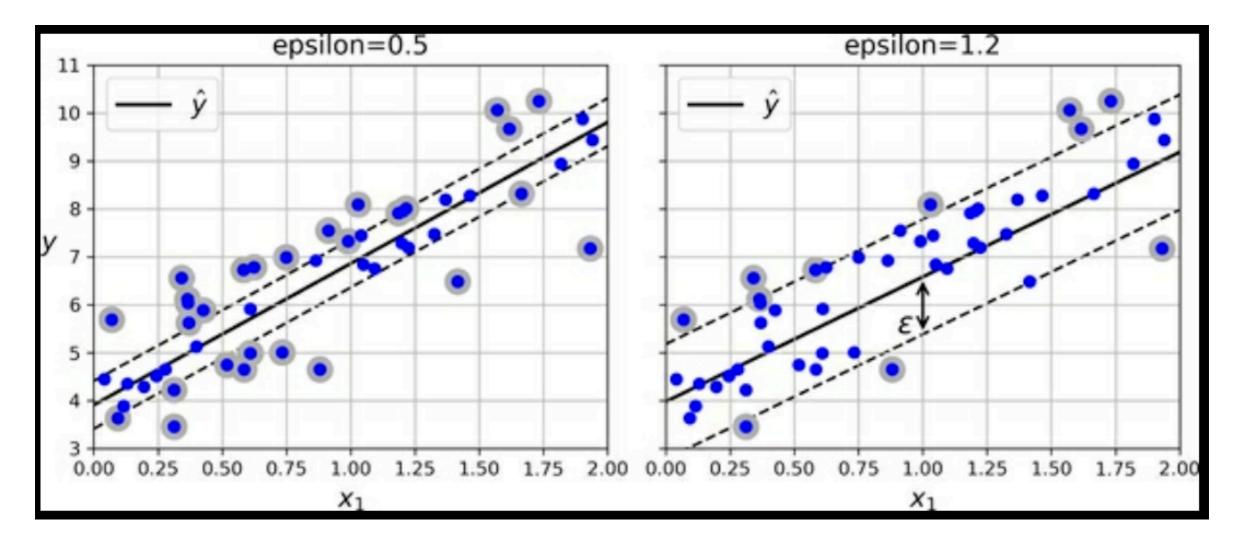
- Fit widest possible street between the classes
- Minimizing instances on the street (margin violations)

SVM regression

- Fit as many instances as possible on the street
- Minimizing instances off the street (margin violations)

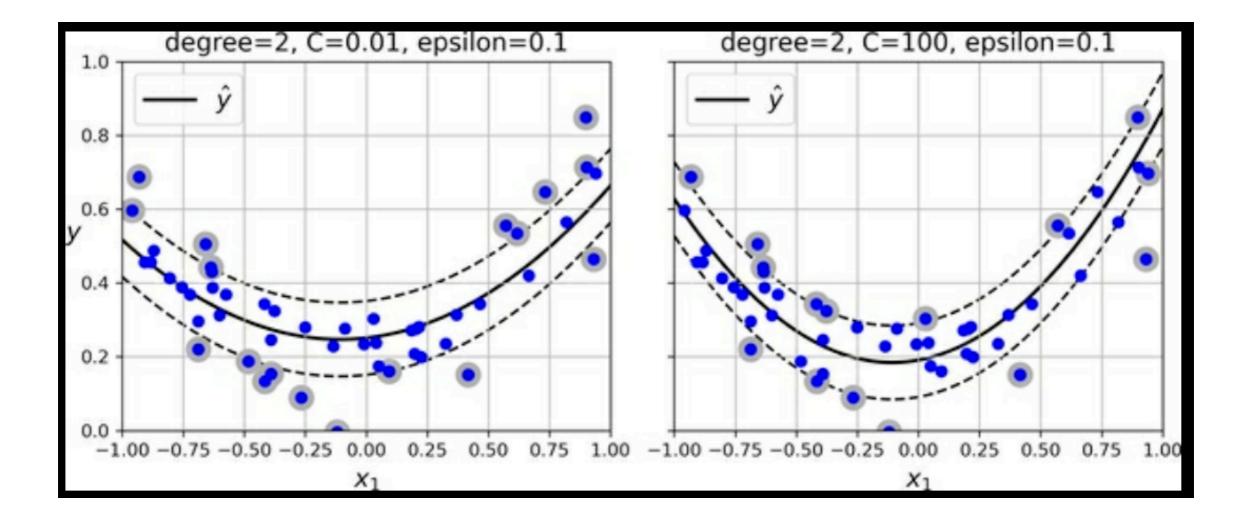


SVM Regression



• epsilon controls width of street

Kernelized SVM Regression



Under the Hood of Linear SVM Classifiers

Weights and Bias

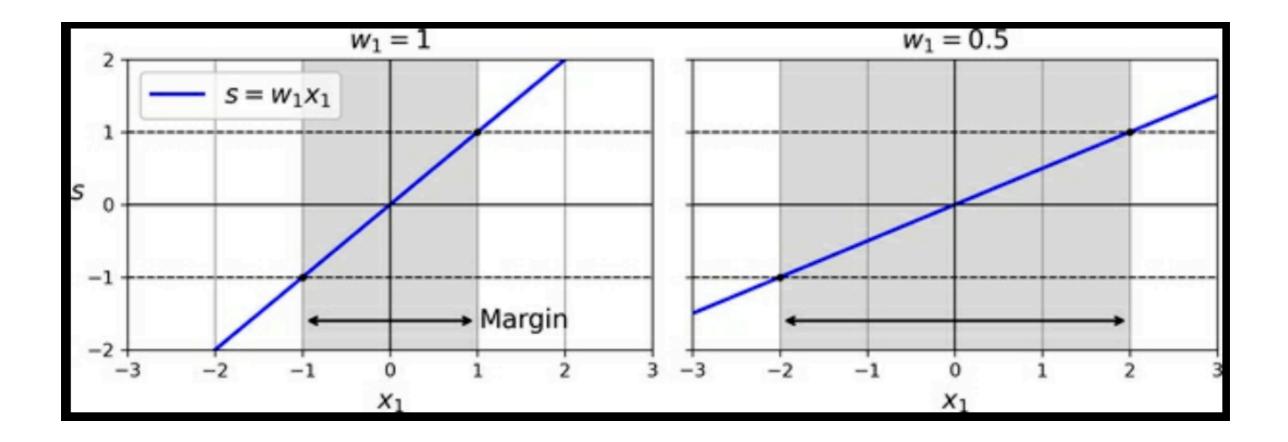
Decision function is

 $w^{T}x + b = w_{1}x_{1} + w_{2}x_{2} + ... + w_{n}x_{n} + b$

- **x** contains the instance values
- w contains the weights
- **b** is the bias

Margin Size

- Define borders of the street at decision function -1 and 1
- Smaller **w** means wider margin
- For an SVM classifier, we want the smallest possible \boldsymbol{w}



Hard Margin Linear SVM Classifier

- We want to minimize **w**
- To keep instances off the street,
 - Decision function must be > 1 for all positive instances
 - And < -1 for all negative instances
- *t* is the instance's correct class

$$\begin{array}{ll} \underset{\mathbf{w},b}{\text{minimize}} & \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} \\ \text{subject to} & t^{(i)}\left(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}+b\right) \geq 1 \quad \text{for } i=1,2,\cdots,m \end{array}$$

Soft Margin Linear SVM Classifier

- Add slack variable zeta ζ
 - Measures how much an instance is allowed to violate the margin

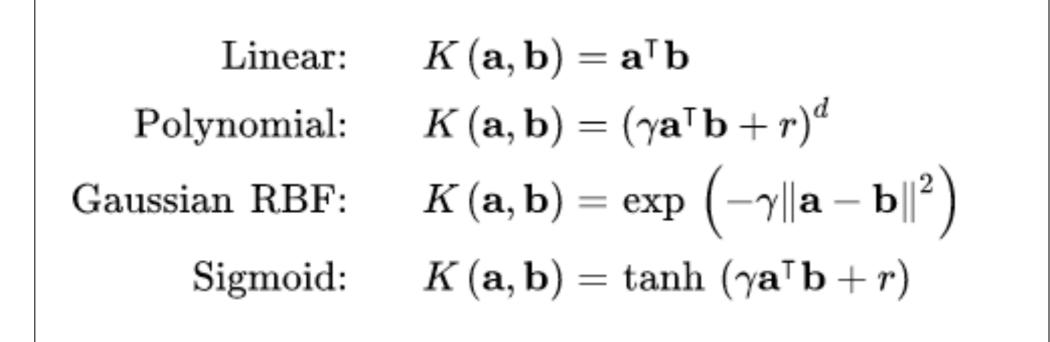
$$egin{aligned} & \min_{\mathbf{w},b,\zeta} & & rac{1}{2}\mathbf{w}^{\intercal}\mathbf{w}+C\sum_{i=1}^m \zeta^{(i)} \ & ext{subject to} & & t^{(i)}\left(\mathbf{w}^{\intercal}\mathbf{x}^{(i)}+b
ight)\geq 1-\zeta^{(i)} & ext{and} & & \zeta^{(i)}\geq 0 & ext{for }i=1,2,\cdots,m \end{aligned}$$

The Dual Problem

The Dual Problem

- Gives the same result for the SVM problem
- Faster to solve
 - When the number of instances *m* is smaller than the number of features *n*
 - Makes the kernel trick possible

Common Kernels



Ch 4b