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Decision Trees

* A series of "if" statements
* Predictions are very fast
* Decisions are interpretable

 Can be combined to form powerful random forests



Training and Visualizing a Decision Tree
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Making Predictions



Traverse the Tree

 Example
* petal length =3.0 cm
 petal width =2.0 cm

* Result: virginica
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samples = 150 & split node
value = [50, 50, 50]
class = setosa
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class = versicolor
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Samples and Value

(petal length (cm) <= 2.45 )
gini = 0.667
samples = 150
. Samples value = [50, 50, 50]

 The number of training instances  \_ cla}ss = seto‘sa >

this node applies to

e Value
e Count of instances in each class

* This node has 150 samples, 50 from
each class



Gini Impurity
G =1~ i:pi,kz

* Gini Impurity

e O if all instances in this node are In
the same class

 Approaches 1 if many classes are
present in this node with low
probabillity

* This node has 50 samples from
each class

p=1/3
G=1-(1/3)2-(1/3)2-(1/3)2 =2/3

‘p

.

etal length (cm) <= 2.45 )
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Decision Tree Boundaries
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Interpretable ML

* Decision trees are white box models
* |t's easy to understand why they made their decisions
* Neural networks are black box models

 No easy way to understand its decisions



Estimating Class Probabilities



Estimating Class Probabilities

« Example

 petal length = 3.0 cm
 petal width =2.0 cm
* Result: virginica

 What is the probability that
this is actually virginica?

 Look in purple node

e 45/46 instances were
virginica

* Probability = 45/46 = 98%

petal length (cm) <= 2.45
gini = 0.667
samples = 150
value = [50, 50, 50]
class = setosa

Truy \False

= petal width (cm) <= 1.75
Leaf [ sa?n'r:le-so;ow J gini = 0.5

Root node
& split node

Split
node value = [50, 0, O] samples = 100 node

| value = [0, 50, 50]
class = setosa class = versicolor

True

gini =0.168
Leaf samples = 54
node | value = [0, 49, 5]

class = versicolor




The CART Training Algorithm



The CART Training Algorithm

» Classification and Regression Tree (CART)

* First split the training set on a single feature k and threshold t
* Decision: k<t?
 E. g. "petal length < 2.45 cm"

 Choosing k and t
* Find values that produce the purest subsets

* Weighted by size



CART Cost Function for

Classification
left MMyigh
T T

l {Gm-tﬁgm measures the impurity of the left /right subset
where |

Mief /right 1S the number of instances in the left /right subset

» After splitting the root node, it splits those nodes, and their
children, and so on

e Stops when it reaches maximum depth

 Or when it cannot reduce impurity

* |t's a greedy algorithm--it only maximizes the value of the current
split. It does not look ahead to future splits.



Computational Complexity



Computational Complexity

* [raversing the decision tree
* O(log2(m)) where there are m training instances
* The number of features, n, doesn't matter

* Training

* O(n x m logz(m)) where there are m training instances






Gini Impurity or Entropy?



Shannon Entropy

H,‘_ —_— Z Pi .k 10g2 (p'i.ll'.)

* Another measure of impurity
* In practice, either Gini impurity or entropy can be used

e The trees will be similar



Regularization Hyperparameters



Nonparametric Model

* Consider a linear or polynomial model
* |t makes an assumption about the data
 Has a fixed number of parameters
* These are parametric models

e Decision trees don't assume a shape for the data
 Don't have a fixed number of parameters
 Can grow as complex as needed
* Can overfit the data

* Can be regularized with hyperparameters



CART Hyperparameters

« max_depth
 max_features

 Maximum number of features evaluated for splitting at each node
« max_leaf nodes
 min_samples_split

 Minimum number of samples a node must have before it can split
 min_samples_leaf

 Minimum number of samples a leaf node must have to be created
« min_weight_fraction_leaf

« Same as min_weight_samples_leaf but expressed as a fraction



Pruning

e Other algorithms first train the decision tree without restrictions
* Then prune it, deleting unnecessary nodes
* A node is unnecessary if

* The purity improvement it provides is not statistically
significant

* Using standard statistical tests, like chi-squared



Effect of Regularization

No restrictions

min_samples_leaf = 5
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Regression



Decision Tree for Regression

* Instead of predicting a class, it predicts a value

[ x1<=0.197 )
mse = 0.098

samples = 200

\value 0.354 'y

True / \alse

(x1<=0.092 )\ ( x1<=0.772 )

mse = 0.038 mse = 0.074

samples = 44 samples = 156
\value = 0.689 5 \value = 0.259 y

' '

mse = 0.018 mse = 0.013 mse = 0.015 mse = 0.036
samples = 20 samples = 24 samples = 110 samples = 46
value = 0.854 value = 0.552 value = 0.111 value = 0.615

Figure 6-4. A decision tree for regression




Decision Tree for Regression
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* Models curve as a series of horizontal lines



CART Cost Function for Regression
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* Uses Mean Squared Error instead of impurity



Overfitting

No restrictions
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Sensitivity to Axis Orientation



AXxis Orientation
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|t can only use horizontal or vertical lines

* Rotating data by 45 degrees makes the model less efficient



PCA Transformation

* Principal Component Analysis Transformation
* Rotates data in a way that
* Reduces the correlation between the features

* Usually makes things easier for decision trees



Result of PCA Rotation
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» After scaling and PCA rotating, the iris dataset can be fit with a
single feature



Decision Trees Have a High Variance



Variance

 Small changes to hyperparameters or data
 May produce very different decision tree models
* Even repeating the Scikit-learn fit can come out different

 Because it chooses features to evaluate randomly



Random Forest

* Average predictions over many decision trees
 Reduces variance

* One of the most powerful models available today



Retraining the Same Model
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