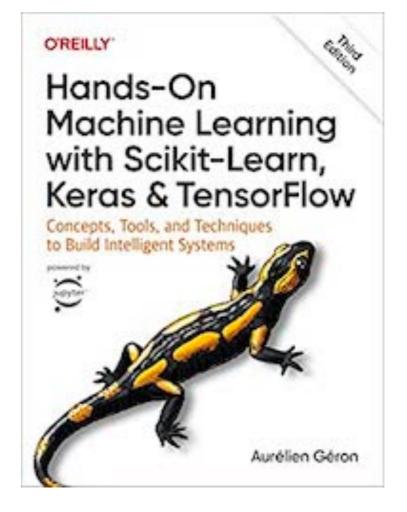
Machine Learning Security

6 Decision Trees



Updated 9-30-23

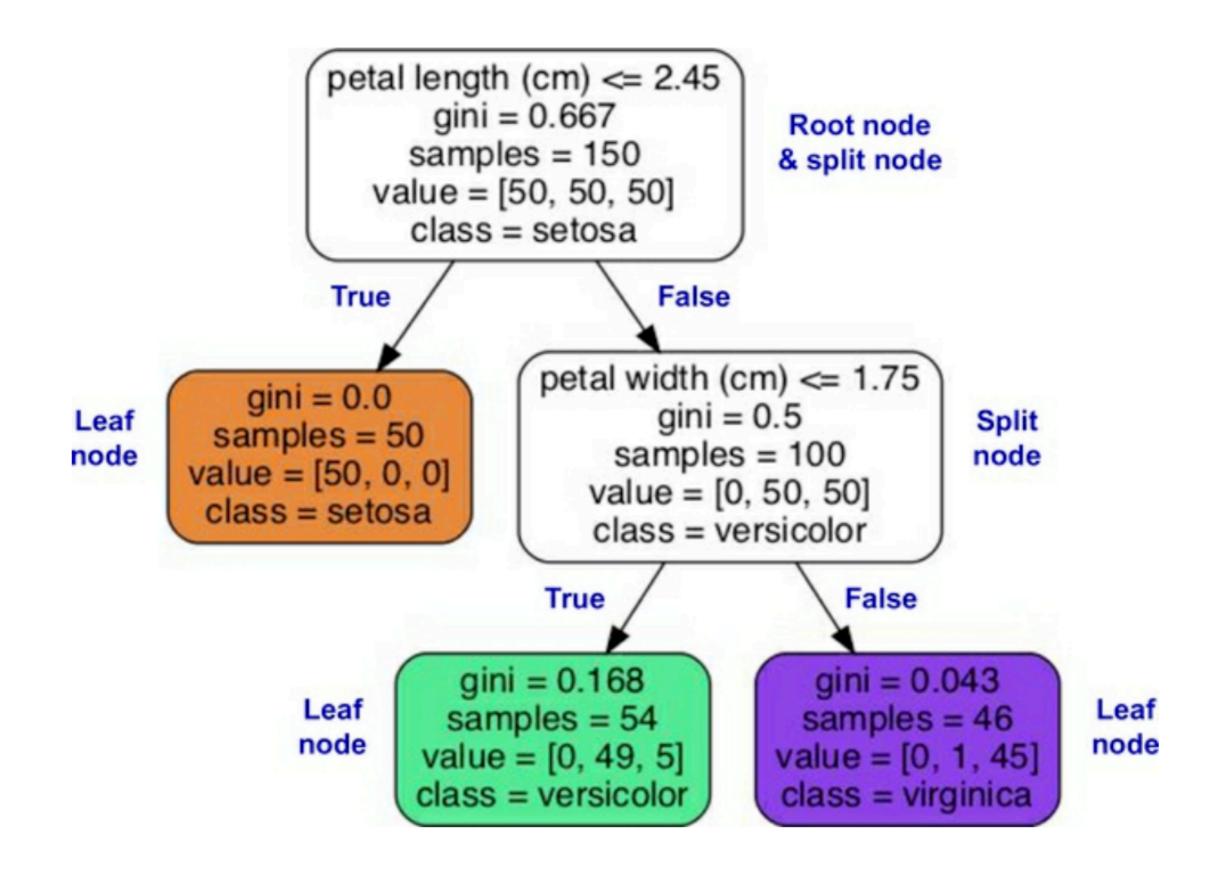
Topics

- Training and Visualizing a Decision Tree
- Making Predictions
- Estimating Class Probabilities
- The CART Training Algorithm
- Computational Complexity
- Gini Impurity or Entropy?
- Regularization Hyperparameters
- Regression
- Sensitivity to Axis Orientation
- Decision Trees Have a High Variance

Decision Trees

- A series of "if" statements
- Predictions are very fast
- Decisions are interpretable
- Can be combined to form powerful random forests

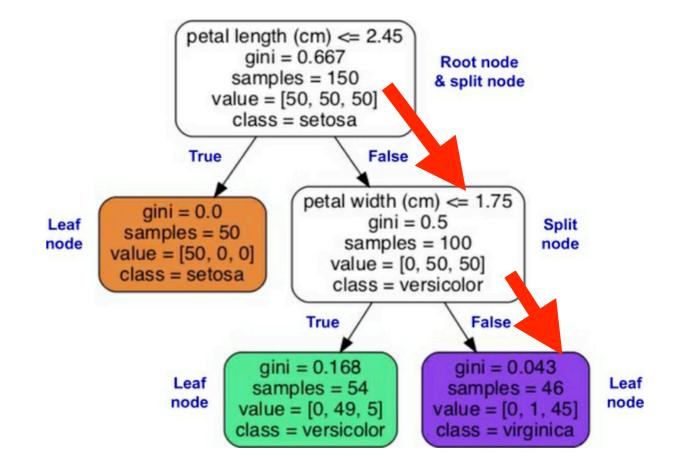
Training and Visualizing a Decision Tree



Making Predictions

Traverse the Tree

- Example
 - petal length = 3.0 cm
 - petal width = 2.0 cm
 - Result: virginica



Samples and Value

- Samples
 - The number of training instances this node applies to
- Value
 - Count of instances in each class
- This node has 150 samples, 50 from each class

petal length (cm) <= 2.45
gini = 0.667
samples $= 150$
value = [50, 50, 50]
class = setosa

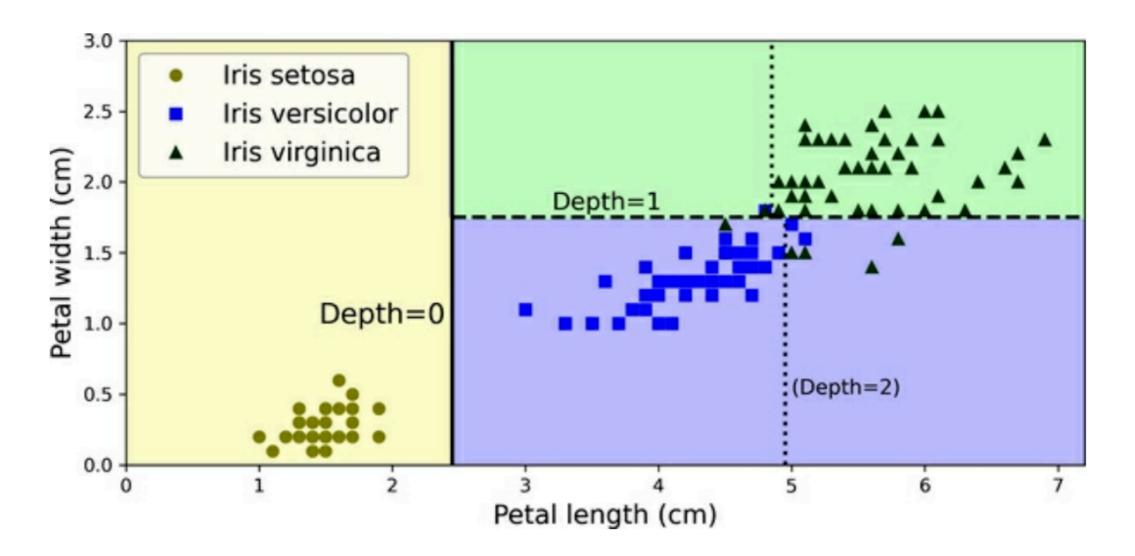
Gini Impurity

$$G_i=1-\sum_{k=1}^n p_{i,k}{}^2$$

- Gini Impurity
 - 0 if all instances in this node are in the same class
 - Approaches 1 if many classes are present in this node with low probability
- This node has 50 samples from each class

p = 1/3G = 1 - (1/3)² - (1/3)² - (1/3)² = 2/3 petal length (cm) <= 2.45 gini = 0.667samples = 150 value = [50, 50, 50] class = setosa

Decision Tree Boundaries



• The "Depth=2" lines are not present in our model

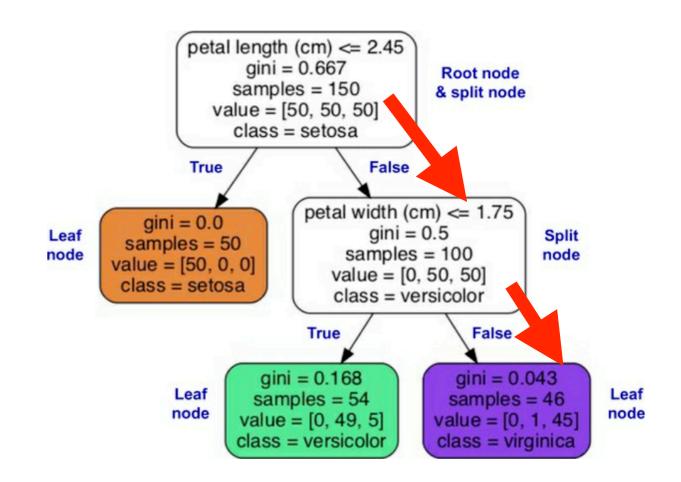
Interpretable ML

- Decision trees are white box models
 - It's easy to understand why they made their decisions
- Neural networks are **black box models**
 - No easy way to understand its decisions

Estimating Class Probabilities

Estimating Class Probabilities

- Example
 - petal length = 3.0 cm
 - petal width = 2.0 cm
 - Result: virginica
- What is the probability that this is actually virginica?
- Look in purple node
 - 45/46 instances were virginica
 - Probability = 45/46 = 98%



The CART Training Algorithm

The CART Training Algorithm

- Classification and Regression Tree (CART)
- First split the training set on a single feature **k** and threshold **t**
 - Decision: *k* ≤ *t* ?
 - E. g. "petal length ≤ 2.45 cm"
- Choosing **k** and **t**
 - Find values that produce the purest subsets
 - Weighted by size

CART Cost Function for Classification

$$\begin{split} J\left(k,t_k\right) &= \frac{m_{\text{left}}}{m}G_{\text{left}} + \frac{m_{\text{right}}}{m}G_{\text{right}} \\ \text{where } \begin{cases} G_{\text{left/right}} \text{ measures the impurity of the left/right subset} \\ m_{\text{left/right}} \text{ is the number of instances in the left/right subset} \end{cases} \end{split}$$

- After splitting the root node, it splits those nodes, and their children, and so on
- Stops when it reaches maximum depth
 - Or when it cannot reduce impurity
- It's a greedy algorithm--it only maximizes the value of the current split. It does not look ahead to future splits.

Computational Complexity

Computational Complexity

- Traversing the decision tree
 - **O**(log₂(**m**)) where there are **m** training instances
 - The number of features, *n*, doesn't matter
- Training
 - $O(n \times m \log_2(m))$ where there are *m* training instances

Ch 6a

Gini Impurity or Entropy?

Shannon Entropy

$$H_i = -\sum_{k=1 \atop p_{i,k}
eq 0}^n p_{i,k} \, \log_2(p_{i,k})$$

- Another measure of impurity
- In practice, either Gini impurity or entropy can be used
- The trees will be similar

Regularization Hyperparameters

Nonparametric Model

- Consider a linear or polynomial model
 - It makes an assumption about the data
 - Has a fixed number of parameters
 - These are parametric models
- Decision trees don't assume a shape for the data
 - Don't have a fixed number of parameters
 - Can grow as complex as needed
 - Can overfit the data
 - Can be regularized with hyperparameters

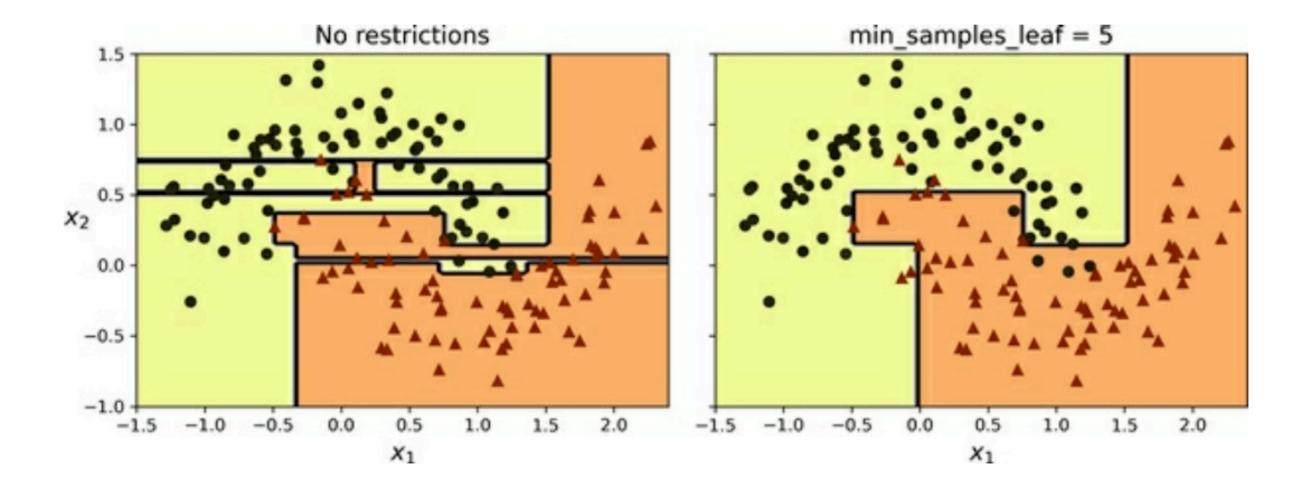
CART Hyperparameters

- max_depth
- max_features
 - Maximum number of features evaluated for splitting at each node
- max_leaf_nodes
- min_samples_split
 - Minimum number of samples a node must have before it can split
- min_samples_leaf
 - Minimum number of samples a leaf node must have to be created
- min_weight_fraction_leaf
 - Same as min_weight_samples_leaf but expressed as a fraction

Pruning

- Other algorithms first train the decision tree without restrictions
- Then **prune** it, deleting unnecessary nodes
- A node is unnecessary if
 - The purity improvement it provides is not statistically significant
 - Using standard statistical tests, like chi-squared

Effect of Regularization



Regression

Decision Tree for Regression

• Instead of predicting a class, it predicts a value

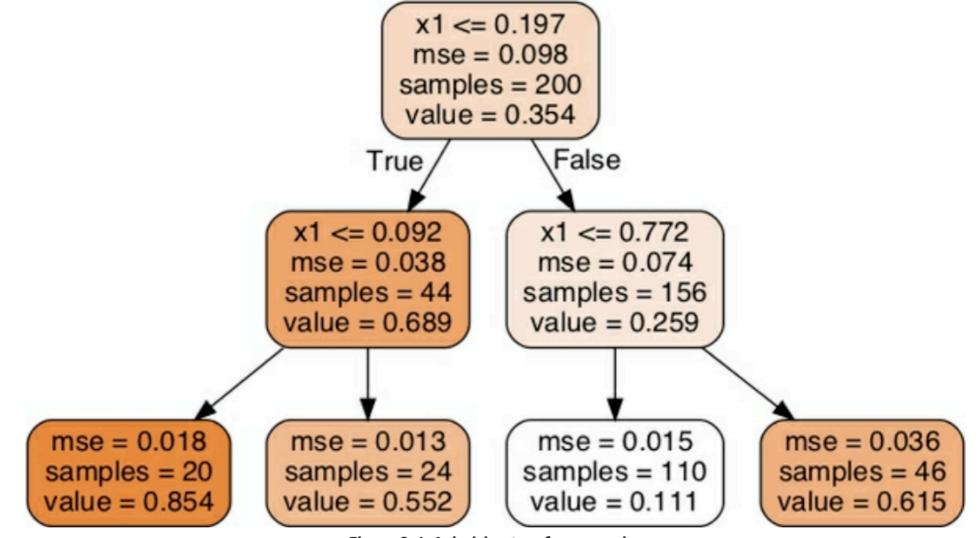
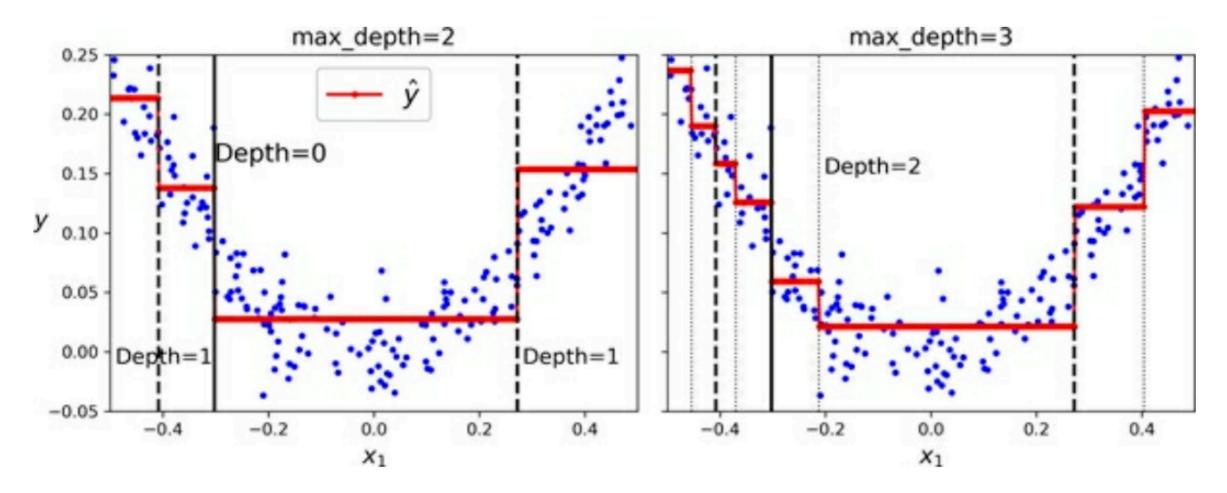


Figure 6-4. A decision tree for regression

Decision Tree for Regression



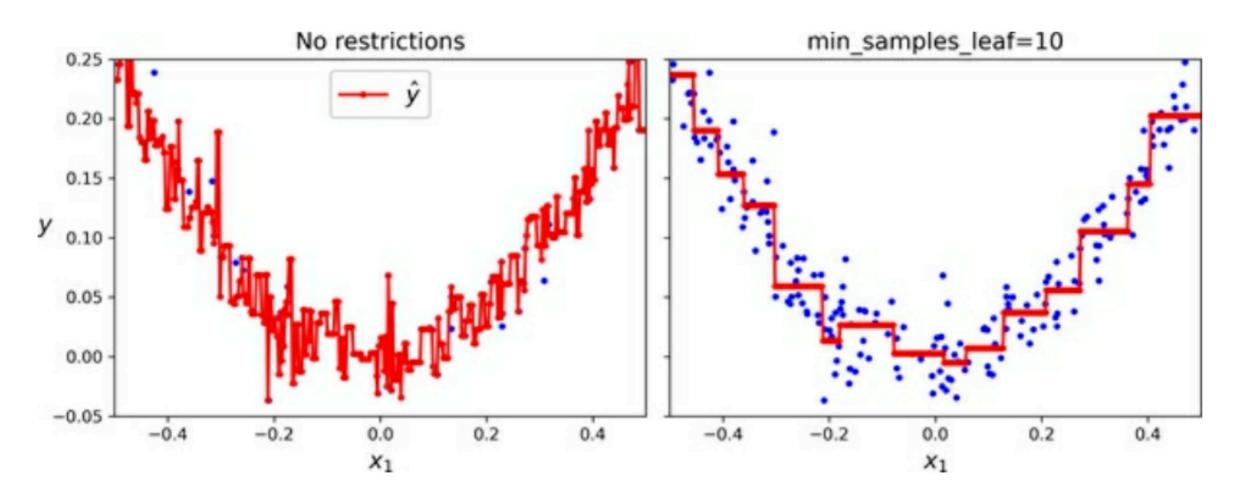
Models curve as a series of horizontal lines

CART Cost Function for Regression

$$J\left(k,t_k
ight) = rac{m_{ ext{left}}}{m} ext{MSE}_{ ext{left}} + rac{m_{ ext{right}}}{m} ext{MSE}_{ ext{right}} \quad ext{where} \quad \left\{ egin{array}{c} ext{MSE}_{ ext{node}} = rac{\sum_{i \in ext{node}} \left(\hat{y}_{ ext{node}} - y^{(i)}
ight)^2}{m_{ ext{node}}} \ \hat{y}_{ ext{node}} = rac{\sum_{i \in ext{node}} \left(\hat{y}_{ ext{node}} - y^{(i)}
ight)^2}{m_{ ext{node}}} \end{array}
ight\}$$

• Uses Mean Squared Error instead of impurity

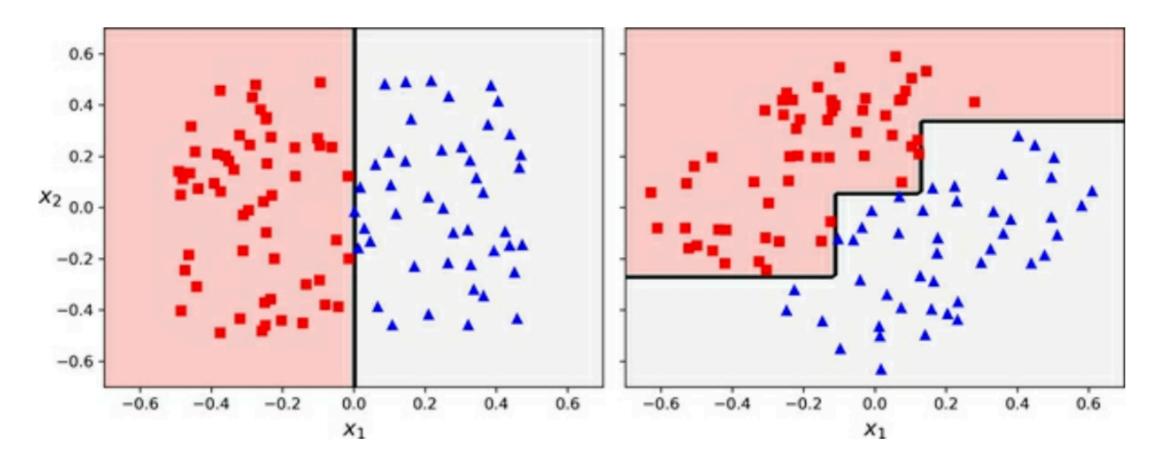
Overfitting



• Regularization is needed

Sensitivity to Axis Orientation

Axis Orientation

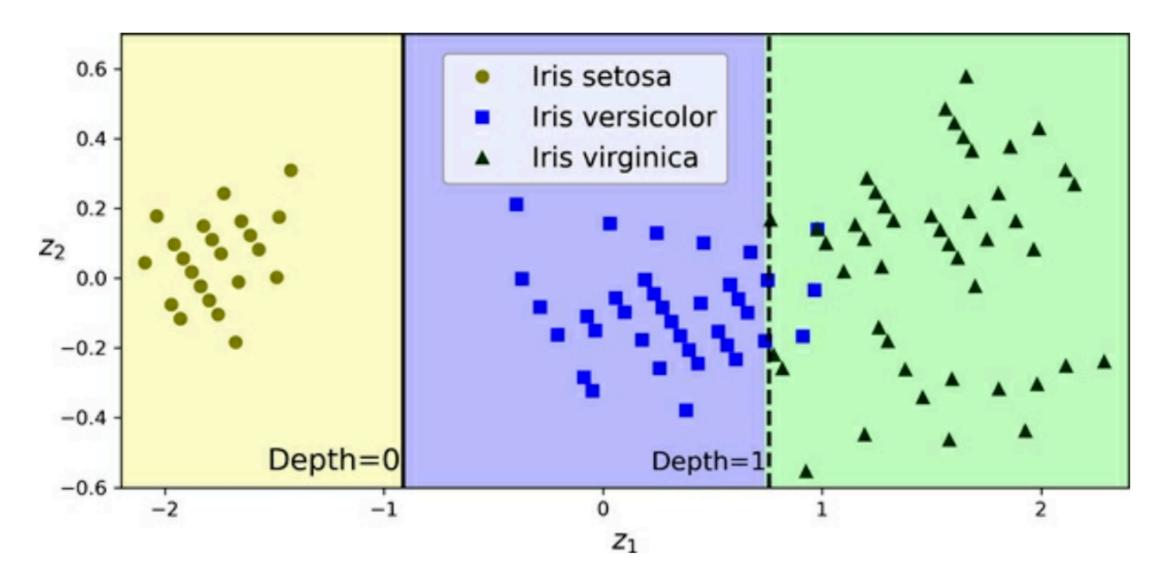


- It can only use horizontal or vertical lines
- Rotating data by 45 degrees makes the model less efficient

PCA Transformation

- Principal Component Analysis Transformation
 - Rotates data in a way that
 - Reduces the correlation between the features
- Usually makes things easier for decision trees

Result of PCA Rotation



 After scaling and PCA rotating, the iris dataset can be fit with a single feature

Decision Trees Have a High Variance

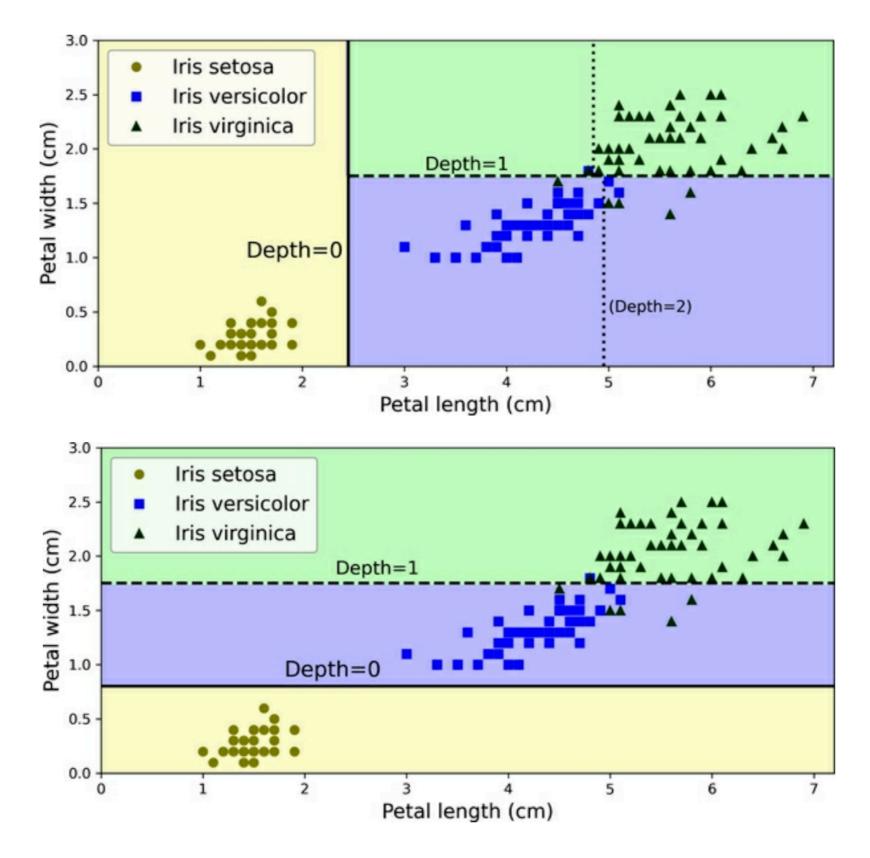
Variance

- Small changes to hyperparameters or data
 - May produce very different decision tree models
- Even repeating the Scikit-learn fit can come out different
 - Because it chooses features to evaluate randomly

Random Forest

- Average predictions over many decision trees
- Reduces variance
- One of the most powerful models available today

Retraining the Same Model



Ch 6b