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Topics

» Voting Classifiers

- Bagging and Pasting
- Random Forests

- Boosting

- Stacking



Ensemble Learning

* Aggregate the predictions of several different models
* An ensemble
* Using the wisdom of the crowd
* Random forest
* A group of decision tree classifiers
* Trained on different subsets of the data

* One of the most powerful ML algorithms



Voting Classifiers



Diverse Classifiers

Logistic SVM Random
regression classifier forest
classifier

Diverse predictors



Hard Voting
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Coin Tosses

Heads ratio
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Figure 7-3. The law of large numbers



Bagging and Pasting



Achieving Diversity

* Use different training algorithms, or
* Use same algorithem every time, but
* Train on different subsets of the same data
 Bagging (short for bootstrap aggregating)
o Sampling with replacement
 Pasting

 Sampling without replacement



Sampling With Replacement
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Sampling Without Replacement
"Pasting”
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Ensemble

* Predictors
can be Predictors
: : (e.g., classifiers)
trained in
parallel .
Training

Random sampling
(with replacement=bootstrap)

Training set

Figure 7-4. Bagging and pasting involve training several predictors on different random samples of the training set



Ensemble of 500 Decision Trees

Decision Tree

Decision Trees with Bagging




Bagging Statistics

* Training set contains m instances

* Each predictor draws m with replacement
* So it only uses 63% of the samples
 Drawing some samples twice or more times

* The remaining 37% not uses are called out-of-bag (OOB)

e You can use them as the test set



Random Patches and
Random Subspaces

« Random patches
 Sample both training instances and features
« Random subspaces

* Keep all training instances but sample features



Random Forest



Random Forest

* An ensemble of decision trees
* Generally trained by bagging
* With m samples from a training set of m instances
 Uses a random sqrt(n) sample of the n features

* To increase tree diversity



Extra-Trees

* Uses a random threshold value for each node

* Instead of searching for the best possible threshold
* This forest is called extremely randomized trees

* or extra-trees
* |Increases variance and makes training much faster

 Sometimes extra-trees perform better, not always



Feature Importance

e Examine a random
forest

Very important

 Look at how
much nodes
using a feature
reduce impurity

* Averaging across
all trees in the
forest

Not important

Figure 7-6. MNIST pixel importance (according to a random forest classifier)






Boosting



Boosting

* QOriginally called hypothesis boosting
 Any ensemble that combines weak learners into a strong learner
e Train predictors sequentially
 Each trying to correct its predecessor
* Two popular methods
 AdaBoost (adaptive boosting)

e Gradient Boosting



AdaBoost

* Each predictor pays more attention to the training instances its

predecessor underfit
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Decision Boundaries

 Models jerk from one
set of instances to
another

* As in the previous
slide

learning_rate = 1




Decision Boundaries

* With slower learning, |
the AdaBoost model learning_rate = 0.5

converges to a good
fit

* Like gradient descent
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Gradient B

oosting

Residuals and tree predictions
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Hyperparameters:
Learning Rate and Number of Trees

 Low learning rate requires more trees, but generalizes better
* This regularization technique is called shrinkage
» Early stopping helps to find the best number of trees
* Hyperparameter n_iter_no_change set to a value, such as 10

« Stop when the last 10 trees didn't help

- learning_rate=1.0, n_estimators=3 learning_rate=0.05, n_estimators=92
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Histogram-Based Gradient Boosting

* Optimized for large datasets

* Bins the input features into b bins (<=255)
* Replacing them by integers

e Greatly reduces the number of threshold values to explore

* Can use more efficient integer data structures

* Makes training much faster (hundreds of times faster)

 Computational complexity O(bxm) instead of O(nxmxlog(m))
 n features, m instances

* Precision loss acts as a regularizer



Stacking



Stacking

* Short for stacked generalization

 Instead of using trivial functions (like hard voting)
e Jo aggregate the predictions in an ensemble

e Train a model to perform aggregation

* Final predictor is called a blender or a meta learner



Stacking

* Regardles of how many
features are input to the

predictors Blending

 They only have one
output value each

Predict

New instance
X



Training the
Blender Blending
e Use cross- tocombizga;rr‘edictions
validation to make
predictions Blending training set «--------- )

 Feed those
predictions into the

Cross-validation
blender

predictions

Predictors

Copy the targets,



Multilayer
Stacking

* Two layers of blenders

 May perform better

 But increases training time
and system complexity Layer 2

Layer1

"‘ New instance






