Machine Learning Security

7 Ensemble Learing and Random Forests

Topics

- Voting Classifiers
- Bagging and Pasting
- Random Forests
- Boosting
- Stacking

Ensemble Learning

- Aggregate the predictions of several different models
 - An **ensemble**
 - Using the wisdom of the crowd
- Random forest
 - A group of decision tree classifiers
 - Trained on different subsets of the data
 - One of the most powerful ML algorithms

Voting Classifiers

Diverse Classifiers

Diverse predictors

Hard Voting

- Often more accurate than the best classifier in the ensemble
- Like measuring more data to reduce noise
- Works best if the predictors are independent
 - Not making the same errors

Coin Tosses

Bagging and Pasting

Achieving Diversity

- Use different training algorithms, or
- Use same algorithem every time, but
 - Train on different subsets of the same data
- Bagging (short for bootstrap aggregating)
 - Sampling with replacement
- Pasting
 - Sampling without replacement

Sampling With Replacement "Bagging"

Population:	
Subset 1:	
Subset 2:	
Subset 3:	

Sampling Without Replacement "Pasting"

Population:	
Subset 1:	
Subset 2:	
Subset 3:	

Ensemble

 Predictors can be trained in parallel

Figure 7-4. Bagging and pasting involve training several predictors on different random samples of the training set

Ensemble of 500 Decision Trees

• X

Bagging Statistics

- Training set contains *m* instances
- Each predictor draws *m* with replacement
 - So it only uses 63% of the samples
 - Drawing some samples twice or more times
- The remaining 37% not uses are called *out-of-bag* (OOB)
- You can use them as the test set

Random Patches and Random Subspaces

- Random patches
 - Sample both training instances and features
- Random subspaces
 - Keep all training instances but sample features

Random Forest

Random Forest

- An ensemble of decision trees
 - Generally trained by bagging
 - With *m* samples from a training set of *m* instances
- Uses a random sqrt(*n*) sample of the *n* features
 - To increase tree diversity

Extra-Trees

- Uses a random threshold value for each node
 - Instead of searching for the best possible threshold
- This forest is called **extremely randomized trees**
 - or extra-trees
- Increases variance and makes training much faster
- Sometimes extra-trees perform better, not always

Feature Importance

- Examine a random forest
 - Look at how much nodes using a feature reduce impurity
 - Averaging across all trees in the forest

Figure 7-6. MNIST pixel importance (according to a random forest classifier)

Ch 7a

Boosting

Boosting

- Originally called *hypothesis boosting*
- Any ensemble that combines weak learners into a strong learner
- Train predictors sequentially
 - Each trying to correct its predecessor
- Two popular methods
 - AdaBoost (adaptive boosting)
 - Gradient Boosting

AdaBoost

Each predictor pays more attention to the training instances its predecessor underfit

Decision Boundaries

- Models jerk from one set of instances to another
- As in the previous slide

Decision Boundaries

- With slower learning, the AdaBoost model converges to a good fit
- Like gradient descent

Gradient Boosting

Tries to fit each predictor to the *residual errors* of its predecessor

Hyperparameters: Learning Rate and Number of Trees

- Low learning rate requires more trees, but generalizes better
 - This regularization technique is called *shrinkage*
- Early stopping helps to find the best number of trees
 - Hyperparameter n_iter_no_change set to a value, such as 10
 - Stop when the last 10 trees didn't help

Histogram-Based Gradient Boosting

- Optimized for large datasets
- Bins the input features into **b** bins (<=255)
 - Replacing them by integers
- Greatly reduces the number of threshold values to explore
- Can use more efficient integer data structures
- Makes training much faster (hundreds of times faster)
- Computational complexity O(b×m) instead of O(n×m×log(m))
 - *n* features, *m* instances
- Precision loss acts as a regularizer

Stacking

Stacking

- Short for stacked generalization
- Instead of using trivial functions (like hard voting)
 - To aggregate the predictions in an ensemble
- Train a model to perform aggregation
- Final predictor is called a *blender* or a *meta learner*

Stacking

- Regardles of how many features are input to the predictors
- They only have one output value each

Training the Blender

- Use crossvalidation to make predictions
- Feed those predictions into the blender

Multilayer Stacking

- Two layers of blenders
- May perform better
- But increases training time and system complexity

Ch 7b