

1 Understanding Operational Technology

Operational Technology (OT)

- Technology that interacts with the physical world
- Hardware, software, and systems
 - That monitor, control, and optimize real-world processes
 - In industries including
 - Manufacturing
 - Transportation
 - Energy
 - Healthcare
 - And more

Topics

- Differentiating OT from IT
- Network Infrastructure for OT systems
- Protocols: The Traffic Rules of OT Communication
- Hierarchical Network Architecture: Organizing Chaos
- Network Performance The Need for Speed and Precision
- Robustness and Reliability: Weathering the Storm
- Applications of OT in Industries

Differentiating OT from IT

OT v. IT

- OT
 - Concerned with the operation of physical processes
 - Like manufacturing, power generation, etc.
 - Drives machinery, controlling pressure, temperature, etc.
- IT
 - Computers, software, networks and systems
 - For processing and distributing data
 - Supports data analysis, decision making, communication, etc.

OT v. IT

- OT
 - Located on the plant floor
 - Direct control and management of industrial operations
- IT
 - Office-based
 - Computing and communication technologies, such as
 - Databases, email, enterprise resource planning systems

IT/OT Convergence

- Integrating the two domains can lead to
 - Improved efficiency, productivity, and decision-making
- IT Priorities
 - Confidentiality, Integrity, Availability
- OT Priorities
 - Safety, Reliability, Productivity

Network Infrastructure for OT Systems

Infrastructure

- Hardware and software
- That facilitates communication between OT components
 - Sensors, actuators, control systems, etc.
- Networks may be small and localized
 - Or multi-site networks spanning entire facilities
 - Or even geographical regions

Protocols

- Rules that define how data is sent over the network
- Traditional OT Protocols
 - Modbus
 - Profibus
 - DNP3
- Designed for reliability and real-time communication
- Prioritizing operational continuity over data security

Convergence

- TCP/IP is becoming prevalent in OT systems
- Benefits
 - Interoperability
 - Advanced data management capabilities
- Risks
 - Exposes OT systems to cyber-attacks

OT Network Architecture

- Hierarchical, with layers for:
 - Enterprise systems
 - Control systems
 - Field devices
- Factors to consider:
 - Determinism (actions occur at set, predictable times)
 - Latency (time between an instruction and data transfer)
 - Jitter (variation in latency)

Purdue Enterprise Reference Architecture (PERA)

Level 4 Business Planning & Logistics Plant Production Scheduling, Operational Management, etc Level 3 Manufacturing **Operations & Control** Dispatching Production, Detailed Production, Scheduling, Reliability Assurance, Levels 2,1,0 Continuous Discrete Batch Control Control Control

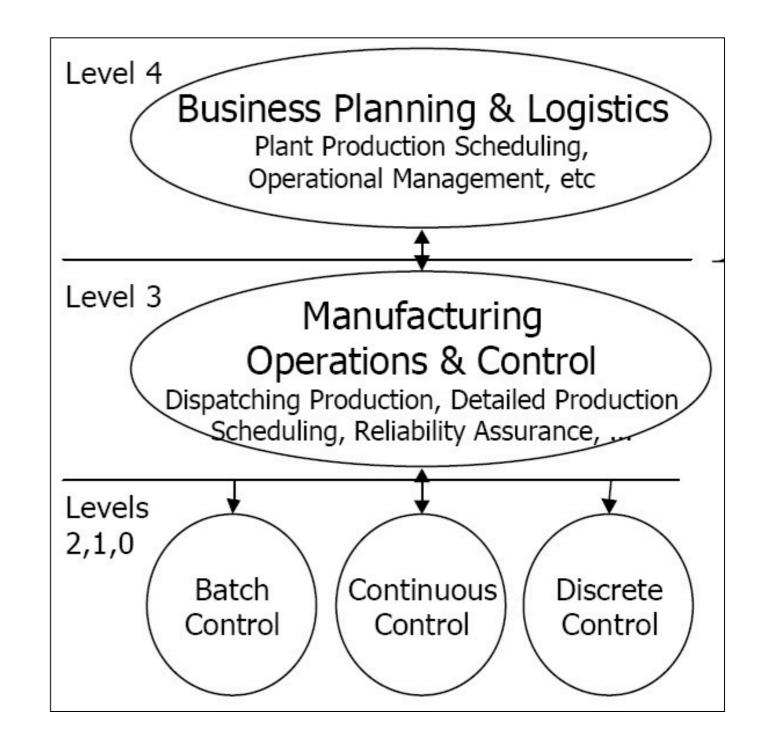
• From Wikipedia

Protocols: The Traffic Rules of OT Communication

Protocols

- Modbus, Profibus, and DNP3
 - Provide real-time, reliable communications
 - Lightweight and simplistic
 - Require little computational power
 - Suited for resource-limited industrial settings

Comparing Protocols


Modbus

- Old and simple, from 1979
- Easy deployment, rapid communication
- Profibus
 - A bit more complex
 - Greater data capacity
 - Can network an extensive range of automation devices
- DNP3
 - Most robust
 - Common in utilities, where telemetry data and control commands need to be reliably handled

Hierarchical Network Architecture: Organizing Chaos

Purdue Enterprise Reference Architecture (PERA)

- Top level
 - Enterprise systems
 - Data servers and managerial workstations
 - Data analysis, process optimization, and oversight of the entire operation
- Middle level
 - Control systems
- Lower levels
 - Sensors and actuators
 - Interact directly with physical processes

Network Performance - The Need for Speed and Precision

OT Network Requirements

- Real-time control (determinism)
- Latency
 - Lower latency means faster data transfer
- Jitter
 - Variation in latency
 - Must be minimized

Robustness and Reliability: Weathering the Storm

Planning for Contingencies

- OT systems operate in harsh environments
 - Power plant, oil rig, factory floor
- Plan for contingencies, such as
 - Equipment failure
 - Electromagnetic interference
 - Extreme environmental conditions
 - Physical tampering

Redundancy and Diversity

- Redundancy
 - Backup systems take over in case of failure
- Diversity
 - In components and technologies
 - Reduce common points of failure

Applications of OT in Industries

OT in Manufacturing

- Automates production processes
- Improves quality control
- Facilitates predictive maintenance
 - With Artificial Intelligence (AI) and Machine Learning (M L)

Fully automated production line

Image from https://www.cnbc.com/2023/07/24/tesla-todiscuss-factory-plan-for-new-24000-car-with-indiacommerce-minister-says-report.html

Energy and Transportation

- Energy and Utilities
 - OT helps manage the generation and distribution of electricity
 - In a nuclear power plant, OT monitors and controls temperature and pressure
 - Adjusts the angle of turbine blades in a wind farm
- Transportation
 - Traffic management systems
 - Sensors monitor traffic flow and adjust signal timing
 - Control systems in railways and airports

Oil and Healthcare

- Oil and Gas
 - OT monitors and controls drilling operations
 - Manages pipeline flows
 - Detects leaks
 - Reduces the need for humans in harsh environments
- Healthcare
 - Manages HVAC in hospitals
 - Automated devices for patient care
 - Like infusion pumps that deliver doses of medicine at predetermined intervals

