


### **2 Fundamentals of OT Systems Introduction**

# Topics

- Key Components of OT Systems
- Architecture and Design Principles of OT Networks and Systems
  - Hierarchy
  - Modularity
  - Determinism
  - Resiliency
  - Security
- Key OT Protocols

## Key Components of OT Systems

## Hardware

- Sensors
  - Monitor physical properties like temperature or pressure
- Actuators
  - Take instructions, usually from a PLC
  - Carry out physical actions like opening a valve or starting a motor
- Programmable Logic Controllers (PLCs)
  - The brains of the OT system
  - Process data from sensors and send commands to actuators
- Networking Equipment
  - Routers, switches, cables, etc.

### Software

#### Operating Systems

- Manage the hardware resources of a device
- Provide services for software applications

#### Applications

• Programs that carry out specific tasks

#### • Firmware

• Low-level software that controls a device's hardware

# **Control Systems**

- Supervisory Control and Data Acquisition (SCADA) Systems
  - High-level control system
  - Allows operators to monitor and control industrial processes remotely
- Distributed Control Systems (DCS)
  - Autonomously manages complex processes across a large facility
  - Distributes control functions across various subsystems
  - For greater efficiency and reliability

### Architecture and Design Principles of OT Networks and Systems

# Hierarchy

- At the top are enterprise-level systems, such as
  - Enterprise Resource Planning (ERP) systems
  - Link the operations on the factory flood with broader business goals
- Beneath that tier are **SCADA** systems
  - Managing industrial processes
- Middle layers contain control systems
  - PLCs (Programmable Logic Controllers) or
  - DCS (Distributed Control Systems)
- At the lowest level are field devices
  - Sensors and actuators

## **Purdue Model**

- Level 6: The Security Management Layer
  - Implement security policies
  - Risk management
  - Incident response
  - Compliance
- Level 4/5: The Enterprise Business Systems Layer
  - ERP systems
- Level 3.5: The Demilitarized Zone (DMZ)
  - A buffer between internal and external networks, for security

## **Purdue Model**

- Level 3: The Site Manufacturing Operations Layer
  - Work orders, schedules, etc.
- Level 2: The Area Supervisory Layer
  - SCADA
- Level 1: The Controller Layer
  - PLCs
- Level 0: The Physical Layer
  - Sensors and actuators that drive production systems

# Modularity

- System uses distinct, independent modules
- Provides flexibility, scalability, and efficiency
- Advantage
  - Cost-effective: can upgrade or replace individual modules
- Disadvantage
  - Security: more modules increases attack surface

## Determinism

- If a condition repeats, the same action will result
- Provides improved coordination, predictability, and performance
- Advantages
  - Performance and Reliability
- Disadvantage
  - Flexibility Trade-off
  - A highly deterministic system can be less flexible
  - Cannot adapt to changes or unexpected events

# Resiliency

- The OT system's ability to maintain operations and quickly recover from adverse conditions or disruptions
  - Hardware failures, power outages, cyberattacks, etc.
- Resilience strategies
  - Processes to identify and isolate issues, implement fixes or workarounds, and validate that the system is functioning correctly
- Disadvantage
  - Increased costs, for
    - Redundant hardware
    - Managing and maintaining a more complex system
    - Disaster recovery planning

# Security

- Protecting Confidentiality, Integrity, and Availability
- Prevent unauthorized access
- Risk management, monitoring, updates
- Key element
  - Incident Response Planning
- Challenge
  - Complexity

## **Key OT Protocols**

# Modbus, OPC, and DNP3

#### Modbus

- Old and simple, easy to implement
- OPC (OLE for Process Control)
  - Standard for data exchange in the OT world
  - Allows different hardware and software to communicate effectively
  - OPC UA (Unified Architecture)
    - Is popular, with platform independence and robust security features

#### • DNP3 (Distributed Network Protocol)

- Robust and flexible
- Popular in utilities sector

# **Ethernet/IP and PROFINET**

#### Ethernet/IP

- A member of the DeviceNet family
- Uses Ethernet infrastructure

#### PROFINET

- An extension of the popular PROFIBUS fieldbus system
- High-speed and flexible architecture for industrial Ethernet



**Ch 2**