

### 4 Architecture and Design Principles of OT Systems Introduction

# Topics

- Understanding OT System Architecture
- Types of OT System Architectures
- Design Considerations for OT Systems
- Best Practices for OT System Design

### **Understanding OT System Architecture**

### • Hardware

- Industrial machinery and control systems
  - Like PLCs, DCS, and SCADA
- Network devices
  - Like switches, routers, and firewalls
- Endpoints
  - Like sensors and actuators

### Software

- Applications to control processes, analyze data, and support decision-making
  - HMI (Human-Machine Interface) applications
  - Data historians
  - Predictive maintenance tools
  - Etc.

### Networking

- LANs, WANs, fieldbus networks, and wireless networks
- Fieldbus
  - Industrial digital communication networks
  - Used for real-time control
  - Including Modbus and Profibus
  - There are many fieldbus networks, listed at <a href="https://en.wikipedia.org/wiki/Fieldbus">https://en.wikipedia.org/wiki/Fieldbus</a>
  - **DNP3** is not included on the list

- Control Systems
  - Like PLCs, DCS, and SCADA
- Interfaces
  - Points where users or other systems interact with OT systems
    - HMI where operators monitor and control processes
    - APIs where software applications interact
    - Gateways between OT and IT systems

# **Types of OT System Architectures**

# **Centralized and Distributed**

- Centralized Architecture
  - A central system, like a SCADA system or PLC
    - Oversees and manages all connected OT devices and processes
    - Simplifies control and coordination
    - Can create a single point of failure
- Distributed Architecture
  - Control and decision-making tasks are distributed
    - Among several systems (like SCADA systems or PLCs)
    - Improved redundancy and resilience
    - More complex to manage

# Hierarchical

- Hierarchical Architecture
  - Layers of control
    - Field devices at the bottom, (sensors and actuators)
    - Controlled by local controllers (PLCs)
    - Managed by supervisory systems (SCADA)
    - Overseen by enterprise level IT systems
  - Provides a clear command structure and control segregation
  - Requires careful coordination and integration

# **Networked and Hybrid**

- Networked Architecture
  - Multiple systems connected to a network
  - Enhances information sharing and collaboration
  - Must manage network reliability and security
- Hybrid Architecture
  - Combines different architectural styles

### **Design Considerations for OT Systems**

# **Design Considerations**

#### Reliability and Availability

 Robust components, redundancy, fault-tolerant systems, and backup systems

### Scalability and Flexibility

- Anticipating future growth
- Modular architectures that allow easy expansion
- Technologies that can accommodate changing demands without disrupting ongoing operations

# **Design Considerations**

### Interoperability

- Selecting compatible protocols and standard interfaces
- Integration strategies that enable seamless communication and data exchange
- Safety and Security
  - Safety measures
  - Fail-safe operation
  - Compliance with industry standards and regulations
  - Cybersecurity controls
    - Network segmentation, access control, encryption

# **Design Considerations**

### Usability and Human Factors

- Intuitive user interfaces
- Clear and actionable information
- Ergonomics
- Incorporating user feedback

### Cost and Return on Investment

- Balance functionality, reliability, and costs
- Total cost of ownership

### **Best Practices for OT System Design**

### Requirements

- Engage with stakeholders, users, and experts
- Delineate operational objectives, performance standards, regulatory obligations, and safety prerequisites
- Modularity and Scalability
  - Modular design
  - Standard interfaces and protocols

### Resilient Network Infrastructure

- Segmentation to isolate critical parts
- Secure remote access points
- Regulate access controls

### Cybersecurity

- Multi-layered defense: firewalls, IDS/IPS, access controls
- Updates and patching

- Data and Analytics
  - Ensure data privacy and integrity with
    - Retention policies, backup mechanisms, and data governance practices
  - Use analytics to extract insights and fine-tune performance

#### Education and Documentation

- Empowers operators and users to operate and maintain the OT system
- System configurations, procedures, and troubleshooting guides

- Testing and Validation
  - Functional and performance tests
  - Security assessments

#### Proactive Maintenance and Upgrades

- Consistent updates to firmware, software, and security measures
- Regular audits and assessments



Ch 4