

5 Fundamentals of OT Networking

Topics

- Understanding OT Networking
- Types of Networks in OT
- Challenges in OT Networking
- Understanding Network Segmentation
- Air Gaps and Physical Segmentation
- Use of Separate Hardware Vendor Equipment
- Redundancy and Resiliency
- Scalability and Flexibility

Understanding OT Networking

Overview

- Goal: robust and reliable network infrastructure
- Can withstand harsh industrial settings
- Network types
 - LAN, WAN, Fieldbus, Wireless
- Protocols
 - Modbus, DNP3, OPC, PROFIBUS
- Challenges
 - Legacy systems
 - Segmentation
 - Scalability and resiliency

Types of Networks in OT

Types of Networks

• LANs

- Connect devices in a small area
- WANs
 - Span larger areas, up to countries or continents
- Fieldbus networks
 - Serve a specific area within a factory or plant
 - Connect sensors and actuators to controllers
- Wireless networks
 - Serve mobile or difficult-to-reach devices
 - Provide flexibility where cables cannot reach

OT Protocols

- Modbus
 - Simple and robust, for industrial devices
- DNP3
 - Reliable for critical infrastructure like power grids
- OPC
 - Interoperable among different vendor devices
- PROFIBUS
 - Fast, deterministic communication in automation systems

Challenges in OT Networking

- Integrating legacy systems
- Network segmentation
 - To contain disruptions or security breaches
- Scalability
- Resiliency

Future of OT Networking

- Software-Defined Networking (SDN)
 - Unprecedented control over network traffic
- Industrial Internet of Things (IIoT)
 - Brings together thousands of devices
 - Rich data for analytics and decision-making
- Edge Computing
 - Process data closer to where it's generated
 - Reduces latency and bandwidth usage

Challenges in OT Networking

Challenges

- Legacy Systems
 - May require upgrades or gateways
- Interoperability
 - May require standard protocols like OPC-UA or middleware
- Network Segmentation
 - Using firewalls, VLANs, and access controls
 - Strike a balance between security and operational needs
- Scalability and Future-Proofing
 - Use scalable networking technologies and architecture

Challenges

- Resilience and Redundancy
 - Redundant network paths and power supplies
 - Backups
 - Link Aggregation Control Protocol (LACP) or EtherChannels
- Skills and Expertise
 - Must understand IT and OT

Understanding Network Segmentation

VLANs (Virtual Local Area Networks)

- A VLAN may contain devices on different physical LANs
- Each VLAN is its own broadcast domain
- This decreases unnecessary traffic and provides some security
- Separate critical systems from the rest of the network
 - Example: separate industrial control systems from corporate IT systems
- Inter-VLAN routing goes through a router or layer 3 switch

Subnetting and VRF

Subnetting

- Divides a large network into separate portions called subnets
- Subnets can be used to segregate regions with different security requirements
- VRF (Virtual Routing and Forwarding)
 - A physical router creates several virtual routing instances
 - Called Virtual Private Networks (VPNs)

PBR (Policy-Based Routing)

- Replaces traditional routing with bespoke policies or criteria
- Dictate specific routes based on source address, packet size, service type, etc.
- Can ensure reliable delivery and lower latency
 - Send all traffic from a certain sensor through a fast path
- Can also balance network loads across multiple links
- Can send sensitive data through encrypted tunnels

ACL (Access Control Lists)

- Enforce security policies based on predefined rules
- Included in routers, switches, and firewalls
- Not foolproof, but part of a defense-in-depth strategy

DMZ (Demilitarized Zone)

- A buffer zone between an internal OT network and an external network
- Has services that should be publicly accessible
 - But separated from the core OT network
- Example 1: Remote Access Gateways
 - Provide only one way to reach the Internet from the OT network, for maintenance personnel
 - A VPN in the DMZ

DMZ (Demilitarized Zone)

• Example 2: Web Servers

- Placed in the DMZ, if the web server is hacked, the attacker doesn't have direct access to the OT network
- Example 2: Multi-Tier DMZ Architecture
 - One DMZ for external-facing services, like a Web server
 - A second DMZ for internal services used by other departments within the organization
 - This isolates threats and impedes lateral movement

SDN (Software-Defined Networking)

- Separates the system that controls the network (control plane)
- From the system that forwards traffic (data plane)
- Uses a centralized network controller
 - Programmatically configured and managed, allowing
- Dynamic Network Configurations
 - Rapid changes based on changing demands or conditions
- Enhanced Network Segmentation
 - Segments can be dynamically adjusted to mitigate the spread of security threats

SDN (Software-Defined Networking)

Scalability

- SDN is easily reprogrammed for larger or modified network
- Security Enhancements
 - A central view of the network
 - Quicker detection of anomalies or suspicious activities
 - Immediate implementation of security policies

Air Gaps and Physical Segmentation

Air Gaps

- Physically isolates a computer or network
- No network interfaces connected to other systems
- Example: Industrial Control System (ICS) with a Safety Instrumented System (SIS)
 - SIS monitors a process and returns it to a safe state if a dangerous condition is detected
 - Often air-gapped to maintain integrity and availability

Physical Segmentation

- Separating networks by using different hardware components
- Separated by a firewall

Use of Separate Hardware Vendor Equipment

Diversity

- Using networking devices and equipment from different manufacturers
- Avoids a single point of failure

Redundancy and Resiliency

Redundancy in Network Design

- Duplicate crucial network components
 - Power supplies, routers, switches, network links
- Link Aggregation Control Protocol (LACP)
 - Combines several physical links into one logical link
 - Produces a high-capacity fault-tolerant connection
- EtherChannels
 - Merges multiple Ethernet links into one logical channel
- Spanning Tree Protocol (STP)
 - Prevents loops in redundant network topologies

Virtual Router Redundancy Protocol (VRRP)

• Creates a virtual router from several physical routers

Scalability and Flexibility

Scalability and Flexibility

Scalability

Ability of an OT network to gracefully handle expansion and increased demands

• Flexibility

- An OT network's capability to adapt to changing operational needs
- New devices, system upgrades, emerging technology
- Modular Design
 - Enhances scalability and flexibility

Virtualization and Containerization

- Create virtual machines that are separate from the underlying hardware
- Increases efficient resource allocation
- Dynamic allocation of virtual servers

Edge and Fog Computing

- Locate computation closer to end devices
- Reduces latency
- Enhances scalability and flexibility

The Cloud

- On-demand resources
- Scalability on an elastic basis
- Capacity to rapidly deploy and manage applications

Ch 5