

7 Cybersecurity Within OT

Topics

- Insight into OT Cybersecurity
- Core Principles of OT Cybersecurity
- The Layers of Defense-in-Depth
- Risk Assessment and Management Within OT Systems
- Regular Security Assessments
- The Journey of a Security Assessment Process
- Advantages of Regular Security Assessments
- Reporting and Information Sharing
- Best Practices for Incident Response and Information Sharing
- The Big Three: NERC CIP, IEC 62443, and NIST SP 800-82

Insight into OT Cybersecurity

Challenges Unique to OT Cybersecurity

- OT systems oversee physical processes
- The demands of real-time processes
- Integration of legacy systems
- Interaction of IT and OT

Layered Defenses

Defense in Depth

- Physical security
- Network segmentation
- Access control
- Intrusion detection and prevention
- Endpoint protection
- Security monitoring

Risk Assessment & Monitoring

- Identifying and evaluating potential risks
- Prioritizing based on impact and probability
- Risk mitigation
- Maintaining asset inventory
- Threat modeling
- Vulnerability assessments
- Establishing risk tolerance levels

Security Technologies & Solutions

- Firewalls
- IDS/IPS
- Secure remote access solutions
- SIEM (Security Information and Event Management) systems
- Encryption
- Authentication
- Secure coding

Incident Response & Recovery

- Incident response plans
- Regular testing
- Scenario-based exercises

Awareness & Training

- Educate employees about
 - Cyber threats,
 - Social engineering techniques
 - Secure behavior best practices
 - Security policies
 - Procedures
 - Individual responsibilities

Core Principles of OT Cybersecurity

Core Principles

- Risk Management
 - Risk assessments, vulnerability management, monitoring
- Asset Inventory and Classification
 - Inventory OT assets, including devices, software, and networks
 - Classify based on criticality, functionality, and impact
- Secure by Design
 - Implement security measures from the inception of OT systems
- Continuous Monitoring and Incident Response
 - Swift detection and response to security incidents
 - Detection, containment, eradication, and recovery

The Layers of Defense-in-Depth

Defense in Depth

Physical Security

Surveillance systems, access controls, intrusion detection systems

Network Segmentation

- Isolate critical assets
- Confine a security breach to reduce its impact

Access Control

• Least privilege

Defense in Depth

- Intrusion Detection and Prevention Systems (IDS/IPS)
 - Monitor network traffic
- Endpoint Protection
 - Anti-malware, application allow-lists, patch management
- Security Monitoring and Event Management
 - Centralized log collection, analysis, and correlation
 - Real-time monitoring of security events
- Security Awareness and Training
 - Train employees about common threats, best practices, and their roles in maintaining a secure OT environment

Risk Assessment and Management within OT Systems

The Risk Assessment Process

Asset Identification

Catalog every asset: hardware, software, networks, data repositories

Threat Identification

- Internal and external threats
- Unauthorized access, malware, physical tampering, natural disasters
- Vulnerability Assessment
 - Weak points in the OT system
 - System configurations, patch levels, access controls, other security controls

The Risk Assessment Process

Likelihood Determination

 Historical data, threat intelligence, environmental conditions, organizational context

Impact Analysis

Operational disruption, safety risks, financial losses, reputational damage

Risk Calculation and Prioritization

- Combine likelihood and impact
- Give high priority to risks with high likelihood or impact

The Risk Assessment Process

Risk Mitigation

 Security controls, patches and updates, enhanced access controls, incident response plans

Continuous Monitoring and Review

Review and update risk assessments

Regular Security Assessments

Security Assessments

- Like health check-ups
- Measure OT systems's overall health
- Weaknesses and vulnerabilities
- Possible attack vectors

The Journey of a Security Assessment Process

Scoping and Planning

- Boundaries of the security assessment
- Identify systems, assets and processes that need evaluation
- Set objectives, methodologies, and timelines
- Ensure communication channels
- Secure permissions and approvals
- Information Gathering
 - Network diagrams, system configurations, asset inventories, security policies

- Vulnerability Scanning and Penetration Testing
 - Locate weaknesses
 - Vulnerability scanning uses an automated tool
 - Penetration testing simulates real-world attacks
- Configuration and Compliance Review
 - Compare system to industry best standards, security standards, and regulatory requirements
 - Assess compliance with security policies and guidelines, find gaps, and recommend necessary modifications

- Incident Response and Management Assessment
 - Evaluate the potency of incident response and incident management capabilities
 - Review incident response plan s
 - Test incident response processes
 - Gauge organization's readiness to tackle security incidents
- Documentation and Reporting

Comprehensive report with results and actionable recommendations

- Remediation and Follow-Up
 - Follow recommendation to address vulnerabilities and weaknesses
 - Formulate a plan to remediate security gaps
 - Implement necessary security controls
 - Track progress towards a more secure posture

Advantages of Regular Security Assessments

Advantages of Regular Security Assessments

- Vulnerability Identification
- Improved Security Posture
- Regulatory Adherence
- Incident Response Preparedness
- Risk Mitigation and Resource Allocation
 - Effective resource allocation based on assessment findings

Reporting and Information Sharing

Reporting

- Incident Response Activation
 - Sparks a swift response, to
 - Evaluate the incident, neutralize the threat, and minimize its impact
- Lessons and Upgrades
 - Record of attacker's Tactics, Techniques, and Procedures (TTP)
- Regulatory Compliance

Reporting

Information Sharing

- Information sharing with industry organizations, government agencies, and cybersecurity communities fosters collective defense, providing information about
 - Attack vectors
 - Indicators of Compromise
 - Mitigation strategies
- Early Warning System and Threat Intelligence
 - New attack vectors and emerging threats
- Boosting Incident Response
- Widening Situational Awareness

Best Practices for Incident Response and Information Sharing

Best Practices for Incident Response and Information Sharing

- Clear Reporting Procedures
 - Furnish employees with necessary channels to report security incidents
- Promoting Anonymity and Confidentiality
 - Allows reports, free from fear of repercussions
- Adopting Standardized Reporting Formats
- Using Collaborative Information Sharing Platforms
 - See next slides

Collaborative Information Sharing Platforms

Collaborative Information Sharing Platforms

Best Practices for Incident Response and Information Sharing

- Engaging in Information Sharing Programs
 - Information Sharing and Analysis Centers (ISACs)
- Embracing Regular Reporting and Analytics

The Big Three: NERC CIP, IEC 62443, and NIST SP 800-82

NERC CIP

- North American Electric Reliability Corporation Critical Infrastructure Protection
 - Mandatory cybersecurity standards for electric power in North America
 - The United States, several provinces in Canada and one state in Mexico
 - Cyber Critical Assets (CCAs)
 - Security Controls
 - Incident Reporting and Response
 - Compliance and Auditing

IEC 62443

- International Electrotechnical Commission 62443
- International standards for Industrial Automation and Control Systems (IACS)
- Security Levels
- Risk Assessment and Management
- Security Policies and Procedures
- Secure Development Lifecycle

NIST SP 800-82

- National Institute of Standards and Technology Special Publication 800-82
- US Gov't Standard to secure Industrial Control Systems (ICS)
- ICS Security Program Development
- Security Controls
- Network Segmentation
- Secure Configuration and Patch Management
- Incident Response

Ch 7