Designing Secure Software

A Guide for Developers

Loren Kohnfelder

(yvewt by 1o Sar'xd

10 Untrusted Input

Updated 4-20-24

Topics

* |nput Validation
* Determining Validity
e Validation Criteria
* Rejecting Invalid Input
e Correcting Invalid Input
* Character String Vulnerabilities
* Length Issues

* Unicode Issues

Topics

* |njection Vulnerabillities
* SQL Injection
* Path Traversal
* Regular Expressions

 Dangers of XML

* Mitigating Injection Attacks

Input Validation

Input Validation Examples

 When logging in

 Ensure that username contains only 8-40 valid characters
* Accepting a number of hours for a week's pay

e Limit it to 100 max
» Attack Surface

* Obviously inputs from the Internet are untrusted

* Or from users

« But inputs from other modules of code may be harmful too

 Because of changes as code is updated

Determining Validity

 Must anticipate all future valid input values
* And disallow the rest

* Allow some headroom
* Allocate a 4096-byte buffer

e Limit inputs to 4000 bytes

Validation Criteria

* |nput must
* Not exceed maximum size
* Be in proper format
* Be within a range of acceptable values

e Size limit prevents DoS attacks caused by inputting large
amounts of data

 Formats include digits, strings with certain allowed characters.
XML, JSON

e Do the three tests in the order shown above

Understandable Limits

 Make your limits understandable to non-programmers
100 characters, not 100 bytes
e 1,000,000 products, not 232 - 1 = 4,292,967,295

Rejecting Invalid Input

« Safest approach
* |If input comes from a user
* |t's kind to provide an informative error message

* Jo help the user provide valid input

Best Practices

« Explain what constitutes a valid entry as part of the user interface, saving
at least those who read it from having to guess and retry. (How am |
supposed to know that area codes should be hyphenated rather than

parenthesized?)

» Flag multiple errors at once, so they can be corrected and resubmitted in

one step.

« When people are directly providing the input, keep the rules simple and

clear.

» Break up complicated forms into parts, with a separate form for each part,

so people can see that they're making progress.

Rejecting Inputs from Other Computers

* Write documentation precisely describing the constraints
* Fully rejecting input is safer than trying to clean it and use it

* The error indicates that something is wrong, so it can be fixed

Correcting Invalid Input

* You may not want to stop the process for a minor error
* Lost sales, frustrated customers...

e Attempt to correct invalid input
* Truncate long strings
 Remove leading or trailing spaces

* Correcting addresses is complicated

 May change input in an unintended fashion

e Such as stripping country codes off long phone numbers

Character String Vulnerabilities

Length Issues

* Long strings may cause buffer overflows
* Or performance problems if they are very long

e So limit maximum number of characters

Unicode Issues

« UTF-8 is most common encoding

* One character can be 1-4 bytes long

Code point & UTF-8 conversion

First code point Last code point Byte 1 Byte 2 Byte 3 Byte 4
U+0000 U+007F | @XXXXXXX
U+0080 U+07FF | 110XxXXXXX & 1OXXXXXX
U+0800 U+FFFF | 1110XXXX | 1OXXXXXX | 1@XXXXXX

U+010000 bIU+10FFFF | 11110x 10XXXX | 1OXXXXXX | 1TOXXXXXX

 There are also UTF=7, UTF-16, and UTF-32 encodings

) o O

(€

P @ @4 ¥

: © G

Encodings and Glyphs

* Glyphs are the rendered visual forms of characters

* These two characters are different but have the same glyphs

1 U+0049 LATIN CAPITA +

C @ unicode-explorer.com/c/0049 o ® > O

— -~
I — Search for Unicode Characters

Unicode Blocks Emoiji Lists Articles Tools My List

| LATIN CAPITAL LETTER |

Codepoint U+0049

1 U+2160 ROMAN NUM +

C @ unicode-explorer.com/c/2160

I - Search for Unicode Characters

Unicode Blocks Emoji sts Articles Tools My List

Unicode Blocks Number Forms U+2160 ROMAN NUMERAL ONE

| ROMAN NUMERAL ONE

Codepoint U+2160

Homomorphs

* Different characters with identical glyphs

« Often used by attackers to fool users

e Spelling Paypal with a Cyrillic character U+0420 instead of P
* The Latin letter C (U+00C7) also has a two-character

representation, consisting of a capital C (U+0043) followed by the
“Combining Cedilla” character (U+0327).

Canonicalization

« A common coding strategy
 Normalizing input strings to a standard form

* Not simple for Unicode

Case Change

e Converting all characters to lowercase or UPPERCASE
e Simplifies later processing
 But some characters have surprising properties
* 'This i1s a test.' and 'This is a test.’
* Converted to uppercase, they both turn into 'THIS IS A TEST.'
* |owercase dotless 1 (U+0131) and
* The familiar lowercase i (U+0069)

 Both become uppercase | (U+0049).

Blocking <script>

* Filtering algorithm:
 Convert input to lowercase
 Scan for <script>
* Convert to uppercase for output

* <script> will pass this test

Injection Vulnerabilities

Forms of Injection

e Data from the user is interpreted as commands at the server

e SQL statements

 Filepath names

» Regular expressions (as a DoS threat)

« XML data (specifically, XXE declarations)
e Shell commands

o Interpreting strings as code (for example, JavaScript’s eval function)

« HTML and HTTP headers (covered in Chapter 11)

SQL Injection

HI, THIS 1S

WE'RE HAVING SOME
COMPUTER TROUBLE.

\%m

YOUR SON'S SCHOOL.

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%

* Exploits of a Mom

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students; -~

~OH.YES UTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

How it Works

e Normal student name: Robert
INSERT INTO Students (name) VALUES ('Robert’);
e Malicious student name

INSERT INTO Students (name) VALUES ('Robert'); DROP TABLE Students;--);

e What the server sees

INSERT INTO Students (name) VALUES (Robert');
DROP TABLE Students; --");

Vulnerable Code

sql stmt = "INSERT INTO Students (name) VALUES ('" + student name +
H!);";

* Includes input without validating it first
* Simple defense: block apostrophes in names

« BUT some names contain apostrophes

Least Privilege

e Software registering students should not have administrative
privileges

* Ability to delete tables

Vulnerable Code

import sqglite3

con = sqlite3.connect('school.db')

student name = "Robert'); DROP TABLE Students;--"

The WRONG way to query the database follows:

sql stmt = "INSERT INTO Students (name) VALUES ('" + student name +
"y

con.executescript(sgl stmt)

Fixed Code

import sglite3

con = sqglite3.connect('school.db')

student name = "Robert'); DROP TABLE Students;--"

The RIGHT way to query the database follows:

con.execute("INSERT INTO Students (name) VALUES (?)", (student name,))

* (?) place holder is filled in from the student_name value

 No apostrophes used

* No chance of misinterpreting the name as executable code

Changing a Grade

* This attack doesn't require a second SQL statement
« Student name: Robert', 'A+'); --

 When submitting grades:

INSERT INTO Grades (name, grade) VALUES ('Robert', 'F');
But with the name robert', 'a+');-- that command becomes:

INSERT INTO Grades (name, grade) VALUES ('Robert', 'A+');--', 'F');

Path Traversal

Input is a filename x

Used to fetch an image from /server/data/image store/x
Attack: setxto ../../secret/key

These are equivalent path names:

e /server/data/image store/../../secret/key
e /server/data/../secret/key

e /server/secret/key

Defense

* Ensure that input contains only alphanumeric characters
* Or filter out troublesome characters like .. and /

e BUT Windows uses \

Vuilnerable Algorithm

* If path begins with ../, reject it
e BUT an attacker who knows the name of a subfolder can use

 subfolder/../../../secret/key

Fixed Code

<N N SC — nano safe_path_demo.py — 73x23
UW PICO 5.09 File: safe_path_demo.py

import os

def safe_path(path):

"nuChecks that argument path is a safe file path.
If not, returns None. If safe, returns the
normalized absolute file path. """

base_dir = os.path.dirname(os.path.abspath(__file__))
__file__ is the path to this running script

filepath = os.path.normpath(os.path.join(base_dir, path))

if base_dir != os.path.commonpath([base_dir, filepathl):
return None

return filepath

path = input("Path:")
print(safe_path(path))

"G

Get Help WriteOut Read File Prev Pg Cut Text
A AL

Exit Justify @I Where is @Y Next Pg

AC
UnCut Texial

Cur Pos
To Spell

Demo

i B SC — -bash — 73x10

'Sam-2:SC sambowne$ python3 safe_path_demo.py
Path:foo

/Users/sambowne/Downloads/SC/foo

'Sam-2:SC sambowne$ python3 safe_path_demo.py

Path:../../foo

None

'Sam-2:SC sambowne$ python3 safe_path_demo.py
Path:subfolder/../../../foo

None

Sam-2:SC sambowne$ N

Regular Expressions

* Some expressions require backtracking and take a long time

(o M SC — nano regex_demo.py — 68x17
UW PICO 5.09 File: regex_demo.py Modified J&

import re, time

str = input("String (like DDDD!): ")
t0 = time.time()

print(re.match(r'(DD+)+$', str))

t = time.time() - tO
print("Time elapsed: ", round(t,3), "seconds")

it Get Helplld WriteOutl Read Fil@{ Prev Pg @{l{ Cut Textl® Cur Pos
O Exit aW| Justify @Y Where is@¥ Next Pg @V UnCut Tellll To Spell

Time Required

900 B SC — -bash — 71x17

Sam-2:SC sambowne$ python3 regex_demo.py

String (like DDDD!): DDD!

None

Time elapsed: 0.0 seconds

Sam-2:SC sambowne$ python3 regex_demo.py

String (like DDDD!): DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD!
None

Time elapsed: 0.167 seconds

Sam-2:SC sambowne$ python3 regex_demo.py

String (like DDDD!): DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD!
None

Time elapsed: ©0.673 seconds

Sam-2:SC sambowne$ python3 regex_demo.py

String (like DDDD!): DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD!
None

Time elapsed: 2.789 seconds

Sam-2:SC sambowne$ N

Mitigation

* Avoid letting untrusted inputs influence computations that have
the potential to blow up

 Don't let untrusted inputs define the regex

* Limit the length of the string the regex matches

e TJest the worst-case to ensure it's not too slow

Dangers of XML

XML entity declarations

* This code generates 8 megabytes of XML

<!DOCTYPE dtd[<!ENTITY bigl "big!"> <!ENTITY big2
"&bigl;&bigl;&bigl;&bigl;&bigl;&bigl;&bigl;&bigl; "> <!ENTITY big3
"&big2;&big2;&big2;&big2;&big2;&big2;&big2;4&big2;"> <!ENTITY big4d
"&big3;&big3;&big3;&bi1g3;&big3;&big3;&big3;&big3; "> <!ENTITY bigh
"&bigd;&bigd;&bigd;&bigd;&bigd;&bigd;&bigd;&bigd; "> <!ENTITY bigé6
"&big5;&big5;&big5;&b1g5;&big5;&b1g5;&big5;&big5; "> <!ENTITY big7
"&big6;&bigb; &bigb;&big6;&bigb; &bigb;&bigb;&bigb; ">

1>

<mega>&big7;&big7;&big7;&big7;&big7;&big7;&big7;&big7;</mega>

Reading a File

* This code puts the contents of the passwd file into &snoop;

<!ENTITY snoop SYSTEM "file:///etc/passwd>" >

e Defense

» Keep untrusted inputs out of any XML your code uses

Mitigating Injection Attacks

* |nput validation is the first line of defense
 But may not be enough

* Avoid inserting untrusted data into constructed strings for
execution

» Use trusted libraries with safe ways to use data in SQL

* Use direct system call to readdir(3) instead of constructing a
command starting with Is

e Cannot execute any other command
* Avoid storing data in the filesystem directly

* Anticipating and blocking all possible attacks is tricky

Source Code Scanners

* Easily find insecure SQL, exec, eval, etc.

