STRIDE Model

Threat

Spoofing

Tampering

Repudiation

Information
disclosure

Denial of service

Elevation of
privilege

Desired
property

Authenticity

Integrity

Non-
repudiability

Confidentiality
Availability

Authorization

Threat Definition

Pretending to be something or someone other than
yourself

Modifying something on disk, network, memory, or
elsewhere

Claiming that you didn't do something or were not
responsible; can be honest or false

Someone obtaining information they are not authorized to
access

Exhausting resources needed to provide service

Allowing someone to do something they are not
authorized to do



CVSS (Common Vulnerability Scoring System)

CVSS Base Score CVSS Severity Level
0 None
0.1-39 Low
40-6.9 Medium
7.0-8.9 High
9.0-10.0 Critical

Factors

Attack Vector
Attack Complexity
Privileges Required
User Interaction
Scope
Confidentiality
Integrity
Availability



Designing Secure Software

A Guide for Developers

Loren Kohnfelder

(yvewt by 1o Sar'xd

8 Secure Programming



Topics

 The Challenge
* Malicious Influence
* Vulnerabilities are Bugs
* Vulnerability Chains
 Bugs and Entropy

* Case Study: GotoFail
* One-Line Vulnerability
 Beware of Footguns

e |essons from GotoFail



Topics

e Coding Vulnerabilities
e Atomicity
 Timing Attacks
e Serialization

 The Usual Suspects



The Challenge



Security Cops

* Criticize developers in unhelpful ways

* Software is fragile and complex

* Professional developers know how to test and debug code
* But security is another matter
* Vulnerable code usually works (when not attacked)

* |dealized design may be secure

 But actual implementation may introduce vulnerabillities



Malicious Influence

e Untrusted inputs may influence code
e Directly or indirectly

* An attack string may avoid rejection and propagate deeper into
the system

* This is called tainting



Vulnerabilities are Bugs

* All software has bugs
* Vulnerabilities are bugs attackers can use to cause harm
e A website layout design flaw is probably just a bug

* An exposed administrative interface is a vulnerability



Vulnerability Chains

e Several minor bugs can combine

* To create a serious vulnerabillity
 Example

 Long ago, a developer noticed that orders without a valid

warehouse ID led to automatic refunds and the order was sent
to another warehouse and fulfilled

* This bug was low-ranked because customer has no way to
change the warehouse ID

* A new change put the Warehouse ID in an editable field on the
order form

* But if the customer changes it, the order should be rejected
* So this bug is low-ranked without testing

 Now customers who change the ID get products and refunds



Bugs and Entropy

 Why do we need to reboot our phones occasionally?

* Entropy (disorder) accumulates, perturbing the system in
unpredictable ways

* Unexpected interactions between execution threads

 Memory corruption on stack and heap



Vigilance

* Errors are common in the easy part of code
* Where you aren't paying attention
 Vigilance requires discipline at first

* With practice it becomes second nature



Case Study: GotoFall



One-Line Vulnerability

* Apple's code to verify SSL certificate signatures
* Intention was to test for three errors
* Return nonzero err if any of the three tests fail

 Return zero err if all three tests pass

if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != @)
goto fail;
if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != @)

goto fail;
goto fail;
if ((err = SSLHashSHAl.final(&hashCtx, &hashOut)) != @)

goto fail;

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);

return err;




One-Line Vulnerability

* The extra goto fail;

e Causes it to skip the last test

* And return zero if the first two tests passed
e So invalid signatures are accepted
* The outlined code is dead (never executed)

if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != @)
goto fail;
if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != @)

goto fail;
goto fail;

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);

return err;




Beware of Footguns

* The outlined line should be indented less
* This error would have been more obvious in Python

 \Which enforces correct indentation

if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != @)
goto fail;
if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != @)

goto fail;

if ((err = SSLHashSHAl.final(&hashCtx, &hashOut)) != 0)
goto fail;

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);

return err;




Equals Signs

* This line tests to see if x equals 8

if (x == 8)

* This line assigns x to the value 8

e And then considers the result true

if (x 8)



Lessons from GotoFail

« Small slips in critical code can have a devastating impact on

security.

» The vulnerable code still works correctly in the expected

case.

o It's arguably more important for security to test that code

like this rejects invalid cases than that it passes the normal

legit uses.

« Code reviews are an important check against bugs
introduced by oversight. It's hard to imagine how a careful

reviewer looking at a code diff could miss this.



Useful Countermeasures

 Better testing
e Test each of those if statements

 Watch out for unreachable code

 Make code flow explicit, with parentheses and curly braces
 Even where they could be omitted

e Source code analysis such as "linters”

* Ad hoc source code filters for recurrent errors

 Measure and require full test coverage

* Especially for security-critical code



» Goto Fail (Song) - YouT +

C @ www.youtube.com/watch

> YouTube

%

J’ump over code that you should execute.

P »l O 02N > e & O

Goto Fail (Song)

= lamae Namnecav and tha Rra A

e https://www.youtube.com/watch?v=tQms037U72w



Coding Vulnerabilities



Atomicity

e Servers are running many threads and processes
 They may interact, creating temporary errors
* Race conditions

» Atomicity describes operations that are guaranteed to be
completed as a single step

 The whole operation either succeeds or fails



Python Example

* The tempfile.mktemp function returned the name of a
temporary file guaranteed not to exist

 But another process might call the same function before your
code writes to it, getting the same file name

* The tempfile.mktemp function is now deprecated
 Use tempfile.NamedTemporaryFile instead
* An atomic operation creates and opens the temporary file

* Nothing can intervene in the process



Timing Attacks

 Measuring the time an operation takes
e Reveals secret information

e Such as how many 1s are in a key

e Meltdown and Spectre are timing attacks related to "speculative
execution”

e Processor races ahead, performing instructions in advance
e |f those instructions are skipped, it attempts to cancel them

e But cached results remain, changing the timing of later read
operations



Mitigations

* Reduce the time differential to an imperceptible level

* Introduce an artificial delay to blur the timing signal



Serialization

e Convert data objects to a byte stream
* When received, they are deserialized
* To retrieve orignal data
e Deserializing malicious inputs may do malicious things

* Python's pickle serialization can be tricked into executing
arbitrary code



Mitigation

 Add a MAC or digital signature to the serialized data
* So it cannot be altered or forged

* Or avoid serialization entirely



Java Web Token

EnCOd ed PASTE A TOKEN HERE DeCOded EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

eyJhbGci0iJIUzITNiIsInR5cCI6IkpXVCJ9.ey

JzdWIi0iIxMjMONTY30DkwIiwibmFtZSI6Ikpva o o

' " "H ’,
G4gRGI1IiwiaWFOIjoxNTE2MjM5MDIy Q. ST1Kx epyps
WwRJSMeKKF2QT4fwpMeJT36P0k6yJV_adQssw5c }

PAYLOAD: DATA

{
"sub": "1234567898",
"name” : "John Doe",
"iat": 1516239622

}

VERIFY SIGNATURE

HMACSHA256 (
base64UrlEncode(header) + ".'
base64UrlEncode(payload),
your-256-bit-secret

) (J secret base64 encoded



The Usual Suspects



Upcoming Topics

» Fixed-width integer vulnerabilities

e Floating-point precision vulnerabilities

» Buffer overflow and other memory management issues
e Input validation

e Character string mishandling

e Injection attacks

« Web security






