
STRIDE Model

CVSS (Common Vulnerability Scoring System)

Factors

8 Secure Programming

• The Challenge

• Malicious Influence

• Vulnerabilities are Bugs

• Vulnerability Chains

• Bugs and Entropy

• Case Study: GotoFail

• One-Line Vulnerability

• Beware of Footguns

• Lessons from GotoFail

Topics

• Coding Vulnerabilities

• Atomicity

• Timing Attacks

• Serialization

• The Usual Suspects

Topics

The Challenge

• Criticize developers in unhelpful ways

• Software is fragile and complex

• Professional developers know how to test and debug code

• But security is another matter

• Vulnerable code usually works (when not attacked)

• Idealized design may be secure

• But actual implementation may introduce vulnerabilities

Security Cops

• Untrusted inputs may influence code

• Directly or indirectly

• An attack string may avoid rejection and propagate deeper into
the system

• This is called tainting

Malicious Influence

• All software has bugs

• Vulnerabilities are bugs attackers can use to cause harm

• A website layout design flaw is probably just a bug

• An exposed administrative interface is a vulnerability

Vulnerabilities are Bugs

• Several minor bugs can combine

• To create a serious vulnerability

• Example

• Long ago, a developer noticed that orders without a valid

warehouse ID led to automatic refunds and the order was sent
to another warehouse and fulfilled

• This bug was low-ranked because customer has no way to

change the warehouse ID

• A new change put the Warehouse ID in an editable field on the

order form

• But if the customer changes it, the order should be rejected

• So this bug is low-ranked without testing

• Now customers who change the ID get products and refunds

Vulnerability Chains

• Why do we need to reboot our phones occasionally?

• Entropy (disorder) accumulates, perturbing the system in
unpredictable ways

• Unexpected interactions between execution threads

• Memory corruption on stack and heap

Bugs and Entropy

• Errors are common in the easy part of code

• Where you aren't paying attention

• Vigilance requires discipline at first

• With practice it becomes second nature

Vigilance

Case Study: GotoFail

• Apple's code to verify SSL certificate signatures

• Intention was to test for three errors

• Return nonzero err if any of the three tests fail

• Return zero err if all three tests pass

One-Line Vulnerability

• The extra goto fail;

• Causes it to skip the last test

• And return zero if the first two tests passed

• So invalid signatures are accepted

• The outlined code is dead (never executed)

One-Line Vulnerability

• The outlined line should be indented less

• This error would have been more obvious in Python

• Which enforces correct indentation

Beware of Footguns

• This line tests to see if x equals 8

if (x == 8)

• This line assigns x to the value 8

• And then considers the result true

if (x = 8)

Equals Signs

Lessons from GotoFail

• Better testing

• Test each of those if statements

• Watch out for unreachable code

• Make code flow explicit, with parentheses and curly braces

• Even where they could be omitted

• Source code analysis such as "linters"

• Ad hoc source code filters for recurrent errors

• Measure and require full test coverage

• Especially for security-critical code

Useful Countermeasures

• https://www.youtube.com/watch?v=tQms037U72w

Coding Vulnerabilities

• Servers are running many threads and processes

• They may interact, creating temporary errors

• Race conditions

• Atomicity describes operations that are guaranteed to be
completed as a single step

• The whole operation either succeeds or fails

Atomicity

• The tempfile.mktemp function returned the name of a
temporary file guaranteed not to exist

• But another process might call the same function before your
code writes to it, getting the same file name

• The tempfile.mktemp function is now deprecated

• Use tempfile.NamedTemporaryFile instead

• An atomic operation creates and opens the temporary file

• Nothing can intervene in the process

Python Example

• Measuring the time an operation takes

• Reveals secret information

• Such as how many 1s are in a key

• Meltdown and Spectre are timing attacks related to "speculative
execution"

• Processor races ahead, performing instructions in advance

• If those instructions are skipped, it attempts to cancel them

• But cached results remain, changing the timing of later read
operations

Timing Attacks

• Reduce the time differential to an imperceptible level

• Introduce an artificial delay to blur the timing signal

Mitigations

• Convert data objects to a byte stream

• When received, they are deserialized

• To retrieve orignal data

• Deserializing malicious inputs may do malicious things

• Python's pickle serialization can be tricked into executing
arbitrary code

Serialization

• Add a MAC or digital signature to the serialized data

• So it cannot be altered or forged

• Or avoid serialization entirely

Mitigation

Java Web Token

The Usual Suspects

Upcoming Topics

Ch 9

