Designing Secure Software

A Guide for Developers

Loren Kohnfelder

(yvewt by 1o Sar'xd

9 Low-Level Coding Flaws

Topics

* Arithmetic Vulnerabilities
* Fixed-Width Integer Vulnerabilities
* Floating-Point Precision Vulnerabilities

 Example: Floating-Point Underflow

 Example: Integer Overflow

e Safe Arithmetic

Topics

* Memory Access Vulnerabilities
« Memory Management
* Buffer Overflow
 Example: Memory Allocation Vulnerabillities

* Case Study: Heartbleed

Arithmetic Vulnerabilities

Fixed-Width Integer Vulnerabilities

* 16-bit integer
* Possible values from

« 0000 0000 0000 0000 =0

* 1o

e 1111 1111 1111 1111 = 65,535 = 216 - 1
* Multiply 300 x 300 = 90,000

e 24,464 in a 16-bit integer

* 65, 530 + 24,464

09 87 65 4321

OOOOOOOlOOlOl 100 = 300

AN

(28 + 25 + 23 + 2%) = 300

Now let's see how to multiply 300 times itself in binary (Figure 9-2).

1514131211109 8 76 5 43 210

0000000100101100
x0000000100101100

00 00000100101100
000 0000100101100

00000 00100101100
00000001 00101100

0101111110010000

Consequences of Integer Overflows

* Buffer overflow
* |ncorrect comparison of values
e Giving a credit instead of charging for a sale

e etc.

How $800k Evaporated from the
PoWH Coin Ponzi Scheme

]
Overnight
1 Eric Banisadr -
4 minread - Feb1, 2018

e A flaw in the smart contract allowed an attacker to subtract 1
coin from a wallet containing zero coins

* The resulting balance: 2256 - 1

DEPLOY & RUN TRANSACTIONS &

transferFrom

OxEe9S9fFOf773C72bB24501c2

0x8B68CB296E43f64c02da5ac

allowance

balanceOf

balanceOfOld 0x921f4c6e8d6Badd4642C3(

Avoiding Integer Overflows and Underflows

* Use an integer size larger than the largest allowable value

* Preceded by checks ensuring that invalid values never sneak
N
 When multiplying two 16-bit numbers, put the result in a 32-bit
number

* Or use memory-safe languages like Rust

is 231
is 233
is 236

is 240
is 245
il el
hread 'main' panicked at 'attempt to add with overflow'

Floating-Point Precision Vulnerabilities

* Numbers like 1.543E23
¢ 1,543 x 1023
* Three parts
e A sign bit (+ or -)
e A fraction (15 digits in precision)

* An exponent

Tiny Errors

* 0.1 + 0.2 will yield 0.30000000000000004

* Solutions
* Use integer arithmetic (good for money, count pennies)
 Don't use (x ==y) for floating points
e Use (x >y - delta && x <y + delta)

* Or the Python function math.isclose()

Example: Floating-Point Underflow

* Floating point numbers only Tl e ——
have a limited number of >>> 100 + 1 — 100
decimal places of precision s 1610 4 1 - 1F10

1.0
. >>> 1E20 + 1 - 1E20

e The 1 is lost, below that 0.0

precision level dadl

 Solution

e Limit the values to a
maximum that's safe

e Such as 1E10

Example: Integer Overflow

To calculate hourly pay in C
* Use 32-bit integers (maximum 4 billion)
Code time as millihours (8000 = 8 hours)

Dollar values in cents ($400 = 40,000 cents, the maximum possible
pay)

A week's work would be 40 hours

* 40,000 millihours x 40,000 cents = 1,600,000,000
* Very close to the limit

* Adding overtime pay can easily exceed 32-bit limit

This task requires 64-bit integers

Safe Arithmetic

* Avoid using tricky code to handle overflow problems
* Mistakes will be hard to find

* And tricks may depend on the implementation on your
machine

Safe Arithmetic

» Be careful using type conversions that can potentially truncate or distort

results, just as calculations can.

« Where possible, constrain inputs to the computation to ensure that all

possible values are representable.

» Use a larger fixed-size integer to avoid possible overflow; check that the

result is within bounds before converting it back to a smaller-sized integer.

« Remember that intermediate computed values may overflow, causing a

problem, even if the final result is always within range.

» Use extra care when checking the correctness of arithmetic in and around

security-sensitive code.

» 0:09/4:17

» https://www.destroyallsoftware.com/talks/wat

Memory Access Vulnerabilities

Memory Management

* Pointers allow direct access to memory by address
* A powerful, but dangerous, feature of C
 alloc() reserves memory on the heap

* free() frees it

Correct Heap Usage

uint8 t *p;
// Don't use the pointer
// before allocating memory for it.

p = malloc(100); // Allocate 100 bytes
// before first use.

p[0] = 1;
p[99] = 123 + p[0];

free (p) ; // Release the memory
// after last use.

// Don't use the pointer anymore.

Vulnerabilities

* Dangling pointer

e Can read or write to pointer after it's freed, or no longer
iIntended to be used

e Double-free

 Second free operation causes improper, dangerous write
operations

Buffer Overflow

char password[1l0]; // Reserve 10 bytes

scanf ("%$s", password); // Can read more
// than 10 bytes

» Can write outside reserved memory

* Allows code injection

Example: Memory Allocation Vulnerabilities

 C data structure

* Writing data to username - 12 can make someone an admin

define MAX USERNAME LEN 39
#define SETTINGS COUNT 10
typedef struct {
bool i1sAdmin;
long userid;
char username [MAX USERNAME LEN + 1];
long setting[SETTINGS COUNT] ;
} user account;

Leaking Memory

isAdmin |

* alloc() does not
initialize memory

* |t contains leftover
data from previous , JseTname
heap data

 This can leak out
Information

* Mitigation

e Write zeroes to whole
data structure before settings[10]
use

strcpy

* Copies the source string, up to its null terminator
* Into the destination string
 May copy a long string into a shorter one, overflowing its buffer

 May copy a short string into a longer one, leaving bytes
uninitialized

strncpy

* Copies only a limited number of bytes from one string to another
 BUT does not ensure a null terminator in the destination string

 May expose data past the end of the destination string

Case Study: Heartbleed

* Flaw in the openssl implementation of the TLS Heartbeat
Extension

* Client sends a message to the server, which echoes it back

Client Server

Heartbeat request
(16 bytes) "Hello!"

V -

Heartbeat response

(16 bytes) "Hello!"
=

Case Study: Heartbleed

« BUT openssl trusted the length parameter in the request, without
verifying it

* So send a short message with a long length

* The server replies with a large chunk of uninitiaized memory

Client Server

Heartbeat request tYPefreq
(16000 bytes) "Hello!" s1ze=16000

Heartbeat response
(16000 bytes) "Hello! ...
Secretl ... Secret2 ...

type=res
$1ze=16000

Remediation

 Compare the length parameter with the length of the actual data
provided

* |f they are not the same, ignore the request

