
9 Low-Level Coding Flaws



• Arithmetic Vulnerabilities


• Fixed-Width Integer Vulnerabilities


• Floating-Point Precision Vulnerabilities


• Example: Floating-Point Underflow


• Example: Integer Overflow


• Safe Arithmetic

Topics



• Memory Access Vulnerabilities


• Memory Management


• Buffer Overflow


• Example: Memory Allocation Vulnerabilities


• Case Study: Heartbleed

Topics



Arithmetic Vulnerabilities



• 16-bit integer


• Possible values from


• 0000 0000 0000 0000 = 0


• to


• 1111 1111 1111 1111 = 65,535 = 216 - 1


• Multiply 300 x 300 = 90,000


• 24,464 in a 16-bit integer


• 65, 536 + 24,464

Fixed-Width Integer Vulnerabilities







• Buffer overflow


• Incorrect comparison of values


• Giving a credit instead of charging for a sale


• etc.

Consequences of Integer Overflows



• A flaw in the smart contract allowed an attacker to subtract 1 
coin from a wallet containing zero coins


• The resulting balance: 2256 - 1





• Use an integer size larger than the largest allowable value


• Preceded by checks ensuring that invalid values never sneak 
in


• When multiplying two 16-bit numbers, put the result in a 32-bit 
number


• Or use memory-safe languages like Rust

Avoiding Integer Overflows and Underflows



• Numbers like 1.543E23


• 1,543 x 1023


• Three parts


• A sign bit (+ or -)


• A fraction (15 digits in precision)


• An exponent

Floating-Point Precision Vulnerabilities



• 0.1 + 0.2 will yield 0.30000000000000004


• Solutions 

• Use integer arithmetic (good for money, count pennies)


• Don't use (x == y) for floating points


• Use (x > y - delta && x < y + delta) 

• Or the Python function math.isclose()

Tiny Errors



• Floating point numbers only 
have a limited number of 
decimal places of precision


• The 1 is lost, below that 
precision level


• Solution 

• Limit the values to a 
maximum that's safe


• Such as 1E10

Example: Floating-Point Underflow



• To calculate hourly pay in C


• Use 32-bit integers (maximum 4 billion)


• Code time as millihours (8000 = 8 hours)


• Dollar values in cents ($400 = 40,000 cents, the maximum possible 
pay)


• A week's work would be 40 hours 


• 40,000 millihours x 40,000 cents = 1,600,000,000


• Very close to the limit


• Adding overtime pay can easily exceed 32-bit limit


• This task requires 64-bit integers

Example: Integer Overflow



• Avoid using tricky code to handle overflow problems


• Mistakes will be hard to find


• And tricks may depend on the implementation on your 
machine

Safe Arithmetic



Safe Arithmetic



• https://www.destroyallsoftware.com/talks/wat



Memory Access Vulnerabilities



• Pointers allow direct access to memory by address


• A powerful, but dangerous, feature of C


• alloc() reserves memory on the heap


• free() frees it

Memory Management



Correct Heap Usage

uint8_t *p; 
// Don't use the pointer  
// before allocating memory for it. 

p = malloc(100);  // Allocate 100 bytes  
                  // before first use. 
p[0] = 1; 
p[99] = 123 + p[0]; 

free(p);          // Release the memory  
                  // after last use. 

// Don't use the pointer anymore.



• Dangling pointer


• Can read or write to pointer after it's freed, or no longer 
intended to be used


• Double-free


• Second free operation causes improper, dangerous write 
operations

Vulnerabilities



Buffer Overflow

char password[10];     // Reserve 10 bytes  
                  
scanf("%s", password); // Can read more  
                       // than 10 bytes

• Can write outside reserved memory


• Allows code injection



• C data structure


• Writing data to username - 12 can make someone an admin

Example: Memory Allocation Vulnerabilities

#define MAX_USERNAME_LEN 39 
#define SETTINGS_COUNT 10 
typedef struct {  
  bool isAdmin;  
  long userid;  
  char username[MAX_USERNAME_LEN + 1];  
  long setting[SETTINGS_COUNT]; 
} user_account;



• alloc() does not 
initialize memory


• It contains leftover 
data from previous 
heap data


• This can leak out 
information


• Mitigation 

• Write zeroes to whole 
data structure before 
use

Leaking Memory



• Copies the source string, up to its null terminator


• Into the destination string


• May copy a long string into a shorter one, overflowing its buffer


• May copy a short string into a longer one, leaving bytes 
uninitialized

strcpy



• Copies only a limited number of bytes from one string to another


• BUT does not ensure a null terminator in the destination string


• May expose data past the end of the destination string

strncpy



• Flaw in the openssl implementation of the TLS Heartbeat 
Extension


• Client sends a message to the server, which echoes it back

Case Study: Heartbleed



• BUT openssl trusted the length parameter in the request, without 
verifying it


• So send a short message with a long length


• The server replies with a large chunk of uninitiaized memory

Case Study: Heartbleed



• Compare the length parameter with the length of the actual data 
provided


• If they are not the same, ignore the request

Remediation



Ch 9


