Ch 12: Covert Malware Launching

Launchers

Purpose of a Launcher

Sets itself or another piece of malware

For immediate or future covert execution

Conceals malicious behavior from the user

Usually contain the malware they're loading

· An executable or DLL in its own resource section

Normal items in the resource section

· Icons, images, menus, strings

Encryption or Compression

The resource section may be encrypted or compressed

Resource extraction will use APIs like

· FindResource

· LoadResource

· SizeofResource

Often contains privilege escalation code

Process Injection

Process Injection

The most popular covert launching process

Injects code into a running process

Conceals malicious behavior

May bypass firewalls and other process-specific security mechanisms

Common API calls:

· VirtualAllocEx to allocate space

· WriteProcessMemory to write to it

DLL Injection

The most commonly used covert launching technique

Inject code into a remote process that calls LoadLibrary

Forces the DLL to load in the context of that process

On load, the OS automatically calls DLLMain which contains the malicious code

[image: image1.png]Hard Drive Memory

Launcher Launcher
Molware Malware B
et oL
- fexplore.exe
iexplore.exe
Malicious DLL]

Figure 13-1. DLL injection—the launcher malware cannot access the Internet
until it injects into iexplore.exe.

Gaining Privileges

Malware code has the same privileges as the code it is injected into

CreateRemoteThread uses 3 parameters
· Process handle hProcess
· Starting point lpStartAddress (LoadLibrary)

· Argument lpParameter Malicious DLL name

Direct Injection

Injects code directly into the remote process

Without using a DLL

More flexible than DLL injection

Requires a lot of customized code

To run without negatively impacting the host process

Difficult to write

Process Replacement

Process Replacement

Overwrites the memory space of a running object with malicious code

Disguises malware as a legitimate process

Avoids risk of crashing a process with process injection

Malware gains the privileges of the process it replaces

Commonly replaces svchost.exe
Suspended State

[image: image2.png]Example 13-2. Assembly code showing process replacement

00401535
00401536
00401537
00401538
00401539
00401538
0040153C
0040153D
00401541
00401542
00401543
00401544
0040154F
00401557

push
push
push
push
push
push
push
lea

push
push
push
mov

mov

call

edi ; lpProcessInformation
ecx ; lpStartupInfo

ebx ; lpCurrentDirectory
ebx ; lpEnvironment
CREATE_SUSPENDED ; dwCreationFlags
ebx ; bInheritHandles

ebx ; lpThreadAttributes
edx, [esp+94h+CommandLine]

ebx ; lpProcessAttributes
edx ; lpCommandLine

ebx ; lpApplicationName

[esp+0A@h+StartupInfo.dwFlags], 101h
[esp+0ABh+StartupInfo.wShowhindow], bx
ds:CreateProcessA

In a suspended state, the process is loaded into memory but the primary thread is suspended

This uses the CREATE_SUSPENDED value

in the dwCreationFlags parameter

In a call to the CreateProcess function

[image: image3.png]Example 13-3. C pseudocode for process replacement

CreateProcess(...,"svchost.exe",...,CREATE_SUSPEND,. .

ZwUnmapViewOfSection(...);
VirtualAllocEx(...,ImageBase,SizeOfImage,...);
WriteProcessMemory(. .. headers,...);
for (1=0; 1 < NumberOfSections; i++) {

B WriteProcessMemory(...,section,.

}
SetThreadContext();

ResumeThread();

ZwUnmapViewOfSection releases all memory pointed to by a section

VirtualAllocEx allocates new memory

WriteProcessMemory puts malware in it

SetThreadContext restores the victim process's environment and sets the entry

VirtualAllocEx allocates new memory

WriteProcessMemory puts malware in it

Hook Injection

[image: image4.png]USER USER

Windows OS Windows OS

Messages W

Threads DU
Process/
Application

Figure 13-3. Event and message flow in Windows with and without
hook injection

Hooks

Windows hooks intercept messages destined for applications

Malicious hooks

· Ensure that malicious code will run whenever a particular message is intercepted

· Ensure that a DLL will be loaded in a victim process's memory space

Local and Remote Hooks

Local hooks observe or manipulate messages destined for an internal process

Remote hooks observe or manipulate messages destined for a remote process (another process on the computer)

High-Level and Low-Level Remote Hooks

High-level remote hooks

· Require that the hook procedure is an exported function contained in DLL

· Mapped by the OS into the process space of a hooked thread or all threads

Low-level remote hooks

· Require that the hook procedure be contained in the process that installed the hool

Keyloggers Using Hooks

Keystrokes can be captured by high-level or low-level hooks using these procedure types

· WH_KEYBOARD or WH_KEYBOARD_LL

Using SetWindowsHookEx

Parameters

· idHook – type of hook to install

· lpfn – points to hook procedure

· hMod – handle to DLL, or local module, in which the lpfn procedure is defined

· dwThrearId– thread to associate the hook with. Zero = all threads

The hook procedure must call CallNextHookEx to pass execution to the next hook procedure so the system continues to run properly

Thread Targeting

Loading into all threads can degrade system performance

May also trigger an IPS

Keyloggers load into all threads, to get all the keystrokes

Other malware targets a single thread

Often targets a Windows message that is rarely used, such as WH_CBT (a computer-based training message)

Malicious DLL hook.dll is loaded

[image: image5.png]Example 13-4. Hook injection, assembly code

00401100
00401101
00401102
00401107
0040110D
0040110F
00401114
00401115
00401118
0040111D
00401122
00401123
00401124
00401125
00401127

push
push
push
call
mov

push
push
call
mov

call
push
push
push
push
call

esi

edi

offset LibFileName ; "hook.dll"
LoadLibraryA

esi, eax

offset ProcName ; "MalwareProc"
esi ; hModule
GetProcAddress

edi, eax

GetNotepadThreadId

eax ; dwThreadId
esi ; hmod

edi ; lpfn

WH_CBT ; idHook
SetWindowsHookExA

Malicious hook procedure address obtained

The hook procedure calls only CallNextHookEx

A WH_CBT message is sent to a Notepad thread

Forces hook.dll to be loaded by Notepad

It runs in the Notepad process space

Detours

A Microsoft Product

Detours makes it easy for application developers to modify applications and the OS

Used in malware to add new DLLs to existing binaries on disk

Modifies the PE structure to create a .detour section

[image: image6.png]i v ot

30000 EEE ==

N T— |
P COFA DI tene A OIS smprat
Wice oo vescen RO DA HeMra A O ot
NS035 51 Pgen WOCAC XIS Hibara A semsn
= WG 7 EnoES WO GOLSEE HemaneRA OKD pamaris
MAGESECION HEAOER tot || GOCFe COUGGE MMrelA O T
WAGESECTONIERCER das || ODGre (DA MAMreRA (0 seusematen
WAGE SECTONHEROER e || B (DA teamareiA (090 St |
MAGESECTONMEADER et || OICFCD CDNFE Iamara®A 0O g comnode
« SECTON GOUFCH GOUACE teihuaa 05 5o
SECTon b WG TOUNC HemareRa 0 e
= S2cron GOECE OMUAGE HamamaRA 000 oty |
2 ETon e W0 GOUE HameRA 03D ey
(D0 oot Encormons __moenar
WEGRT Fatulames &1L Nemes | ORT0LS—SooNen G o
WEGRT vt o DOOE O Endliszots e @)
s |

Figure 13-4. A PEview of Detours and the evil.dll

Containing original OE header with a new import address table

setdll is the Microsoft tool used to point the PE to the new import table

There are other ways to add a .detour section

APC Injection

Asynchronous Procedure Call
(APC)

Directs a thread to execute other code prior to executing its regular path

Every thread has a queue of APCs attached to it

These are processed when the thread is in an alterable state, such as when these functions are called

· WaitForSingleObjectEx

· WaitForMultipleObjectsEx

· Sleep

Two Forms of APCs

Kernel-Mode APC

· Generated for the system or a driver

User-Mode APC

· Generated for an application

APC Injection is used in both cases

APC Injection from User Space

Uses API function QueueUserAPC

Thread must be in an alterable state

WaitForSingleObjectEx is the most common call in the Windows API

Many threads are usually in the alterable state

QueueUserAPC Parameters

hThread handle to

pfnAPC defines the function to run

dwData parameter for function

[image: image7.png]Example 13-5. APC injection from a user-mode application

00401DA9
00401DAD
00401DAF
00401DB1
00401DB7
00401DB9
00401DBB
00401DBD
00401DC1
00401DC2
00401DC8

push
push
push
call
mov
test
iz
push
push
push
call

[esp+4+dwThreadId]
0

10h

ds:OpenThread [l
esi, eax

esi, esi

short loc_401DCE
[esp+4+dwData]
esi
ds:LoadLibraryA B
ds:QueueUserAPC

; dwThreadId
; bInheritHandle
; dwDesiredAccess

; dwData = dbnet.dll
; hThread
; pfnAPC

1: Opens a handle to the thread

2: QueueUserAPC is called with pfnAPC set to LoadLibraryA (loads a DLL)

dwData contains the DLL name (dbnet.dll)

Svchost.exe is often targeted for APC injection

APC Injection from Kernel Space

Malware drivers and rootkits often want to execute code in user space

This is difficult to do

One method is APC injection to get to user space

Most often to svchost.exe
Functions used:

· KeInitializeApc

· KeInsertQueueApc

[image: image8.png]Example 13-6. User-mode APC injection from kernel space

000119BD
000119BE
000119C0
000119C3
000119C4
000119C9
000119CB
000119CE
000119CF
00011905
00011907
00011909
000119DA
000119DD
000119E0
000119E1

push
push
push
push
push
push
push
push
call
cnp
jz
push
push
push
push
call

ebx

18

[ebp+arg_4] B
ebx

offset sub_11964
2

[ebp+arg_0] B
esi
ds:KeInitializeApc
edi, ebx

short loc_119EA
ebx

[ebp+arg_C]

[ebp+arg_8]

esi

edi ;KeInsertQueueApc

Last modified 11-3-13
CNIT 126 – Bowne
Page 6 of 6
Fall 2013

