
Practical Malware Analysis
Ch 12: Covert Malware Launching

Last revised: 4-10-17

Hiding Malware

• Malware used to be visible in Windows
Task Manager
• But users often know how to look there

• So malware authors now try to blend their
malware into the normal Windows
landscape

• Covert lanching techniques

Launchers

Purpose of a Launcher

• Sets itself or another piece of malware
• For immediate or future covert execution

• Conceals malicious behavior from the user
• Usually contain the malware they're loading

– An executable or DLL in its own resource
section

• Normal items in the resource section
– Icons, images, menus, strings
– Not considered part of the executable

Encryption or Compression

• The resource section may be encrypted or
compressed

• Resource extraction will use APIs like
– FindResource
– LoadResource
– SizeofResource

• Malware also often contains privilege
escalation code

Process Injection

Process Injection

• The most popular covert launching technique
• Two types: DLL Injection and Direct Injection

• Injects code into a running process
• Conceals malicious behavior
• May bypass firewalls and other process-specific

security mechanisms
• Common API calls:

– VirtualAllocEx to allocate space in another
process's memory

– WriteProcessMemory to write to it

DLL Injection

• The most commonly used covert launching
technique

• Inject code into a remote process that calls
LoadLibrary

• Forces the DLL to load in the context of
that process

• On load, the OS automatically calls
DLLMain which contains the malicious
code

Example

• Launcher wants Internet access
• To download more code

• But a process-specific firewall won't let
the launcher's process access the Internet

• Solution: inject malicious code into
Internet Explorer process
• Which already has Internet access

Gaining Privileges
• Malware code has the same privileges as

the code it is injected into

• CreateRemoteThread uses 3
parameters
– Process handle hProcess
– Starting point lpStartAddress

(LoadLibrary)
– Argument lpParameter Malicious DLL name

Analyzing DLL Injection

• Once you find DLL injection activity in
disassembly
• Look for strings containing the name of

the malicious DLL and the victim
process

• Or put a breakpoint in the injection
code and examine the stack to find
them

Direct Injection

• Injects code directly into the remote
process

• Without using a DLL
• More flexible than DLL injection
• Requires a lot of customized code

• To run without negatively impacting the host
process

• Difficult to write

Process Replacement

Process Replacement

• Overwrites the memory space of a running
object with malicious code

• Disguises malware as a legitimate process
• Avoids risk of crashing a process with

process injection
• Malware gains the privileges of the

process it replaces
• Commonly replaces svchost.exe

Suspended State

• In a suspended state, the process is
loaded into memory but the primary
thread is suspended
– So malware can overwrite its code before it

runs

• This uses the CREATE_SUSPENDED value
• in the dwCreationFlags parameter
• In a call to the CreateProcess function

• ZwUnmapViewOfSection releases all
memory pointed to by a section

• VirtualAllocEx allocates new memory
• WriteProcessMemory puts malware in it

• SetThreadContext restores the victim
process's environment and sets the entry
point

• ResumeThread runs the malicious code

Hook Injection

Hooks

• Windows hooks intercept messages
destined for applications

• Malicious hooks
– Ensure that malicious code will run whenever

a particular message is intercepted
– Ensure that a DLL will be loaded in a victim

process's memory space

Local and Remote Hooks

• Local hooks observe or manipulate
messages destined for an internal process

• Remote hooks observe or manipulate
messages destined for a remote process
(another process on the computer)

High-Level and Low-Level  
Remote Hooks

• High-level remote hooks
– Require that the hook procedure is an

exported function contained in a DLL
– Mapped by the OS into the process space of a

hooked thread or all threads

• Low-level remote hooks
– Require that the hook procedure be contained

in the process that installed the hook

Keyloggers Using Hooks

• Keystrokes can be captured by high-level
or low-level hooks using these procedure
types
– WH_KEYBOARD
– or
– WH_KEYBOARD_LL

Using SetWindowsHookEx  
for Remote Windows Hooking

• Parameters
– idHook – type of hook to install
– lpfn – points to hook procedure
– hMod – handle to DLL, or local module, in which the
lpfn procedure is defined

– dwThreadId– thread to associate the hook with.
Zero = all threads

• The hook procedure must call CallNextHookEx
to pass execution to the next hook procedure so
the system continues to run properly

Thread Targeting

• Loading into all threads can degrade system
performance

• May also trigger an IPS
• Keyloggers load into all threads, to get all

the keystrokes
• Other malware targets a single thread
• Often targets a Windows message that is

rarely used, such as WH_CBT (a computer-
based training message)

Explanation of Next Slide

• Malicious DLL hook.dll is loaded
• Malicious hook procedure address
MalwareProc obtained

• The hook procedure calls only
CallNextHookEx

• A WH_CBT message is sent to a Notepad
thread

• Forces hook.dll to be loaded by Notepad
• It runs in the Notepad process space

Detours

A Microsoft Product

• Detours makes it easy for application
developers to modify applications and the
OS

• Used in malware to add new DLLs to
existing binaries on disk

• Modifies the PE structure to create
a .detour section

• Containing original PE header with a new
import address table

• setdll is the Microsoft tool used to point
the PE to the new import table

• There are other ways to add a .detour
section

APC Injection

Asynchronous Procedure Call 
(APC)

• Directs a thread to execute other code prior to
executing its regular path

• Every thread has a queue of APCs attached to it
• These are processed when the thread is in an

alterable state, such as when these functions
are called
– WaitForSingleObjectEx
– WaitForMultipleObjectsEx
– Sleep

Two Forms of APCs

• Kernel-Mode APC
– Generated for the system or a driver

• User-Mode APC
– Generated for an application

• APC Injection is used in both cases

APC Injection from User Space

• Uses API function QueueUserAPC
• Thread must be in an alterable state
• WaitForSingleObjectEx is the most

common call in the Windows API
• Many threads are usually in the alterable

state

QueueUserAPC Parameters

• hThread handle to thread
• pfnAPC defines the function to run
• dwData parameter for function

• 1: Opens a handle to the thread
• 2: QueueUserAPC is called with pfnAPC set

to LoadLibraryA (loads a DLL)
• dwData contains the DLL name (dbnet.dll)
• Svchost.exe is often targeted for APC injection

APC Injection from Kernel Space

• Malware drivers and rootkits often want to
execute code in user space

• This is difficult to do
• One method is APC injection to get to user

space
• Most often to svchost.exe
• Functions used:

– KeInitializeApc
– KeInsertQueueApc

