CNIT 127: Exploit Development
Vulnerability Discovery
Ch 16: Fault Injection

The

Shellcoders
H:l.n(ll)m)I\'

Updated 4-4-17




Fault Injection

Long used to verify the fault tolerance of
hardware, such as

— Automobile and airplane components

— Coffee makers

Faults are injected through

— Pins of integrated circuits

— Bursts of EMI (Electromagnetic Interference)
— Altered voltage levels, etc.



QA (Quality Assurance)

» Engineers test software for weaknesses
with fault injection

« Automating these tests makes their work
much more efficient
* They also use manual auditing techniques

— Reverse engineering
— Source code auditing



Topics

* Design Overview
* Fault Monitoring
* Putting It Together



Design Overview

3. The auditor now chooses a
series of inputs out of the
capture and supplies them to

the fault injection engine: 4. Inject faults into the

captured client input and

2. Using a sniffer, a.k.a "Modification Engine.” e
capture client-based deliver it to the server
network traffic as it > @ software package.
travels across the \

network to the server. \
Fault

Injection N

MY
e e e L L LT >
Client Client to Server Server
Software Communications Software
1. Generate network The communications between the 5. Using our fault monitoring
traffic by communicating client and server are typically component, we will capture
with the server using a network protocols such as exceptions generated in our

client software package. HTTP, SMTP, FTP, IMAP, and POP3. target software application.



Input Generation

» Select input that uses esoteric and
untested software features

* This request uses the uncommon .ida
filetype

— An ISAPI filter included in IS web server

GET /search.ida?group=kuroto&g=riot HTTP/1l.1
Accept:

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0

Host: 192.168.1.1

(
-
-
)
)
!
}
n 3
P N
D
D
>
|
-
b
b
(D




Generating Input

* Manual generation

— Build inputs in a text editor

— Time-consuming, but produces best results
« Automated generation

— Creating fake input with a program

— May waste time on buggy input



Generating Input

 Live capture
— Inject faults directly into live network traffic

— Requires complex adjustment of data size
fields, checksums, etc.

* Fuzz generation

— Researchers noticed core dumps when using a
dial-up modem during a thunderstorm

— Random data injection found many new faults



Fault Injection

» Open-source apps

— Can be recompiled with special added code
to improve fuzzing

— Such as American Fuzzy Lop (link Fuzz 15)

» Closed-source apps
— Only input data is modified



Modification Engines

 To find buffer overflows
— Inject variable-sized data to elements

— Use non-alphanumeric characters to delimit
elements

— Inject into elements, without altering
delimiters

GET /index.html HTTP/1.1
Host: test.com




A sample run with ten iterations using the fault z=vz2002 would produce the following

faulted input streams.

Sequential fault injection:

EEYE2003GET /index.html
GEEYE2003ET /index.html
GEEEYE2003T /index.html
GETEEYE2003 /index.html

GET
GET
GET
GET
GET
GET

EEYE2003/index.html
/EEYE2003index.html
/iEEYE2003ndex.html
/inEEYE2003dex.html
/indEEYE2003ex.html
/indeEEYE2003x.html

HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.

Fault injection using delimiter logic:
GETEEYE2003 /index.html

GET
GET
GET
GET
GET
GET
GET

EEYE2003/index.html
EEYE2003/index.html
/EEYE2003index.html
/indexEEYE2003.html
/index.EEYE2003html
/index.htmlEEYE2003

HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
/index.html EEYE2003HTTP/1.

1\r\nHost:
1\r\nHost:
1\r\nHost:
1\r\nHost:
1\r\nHost:
1\r\nHost:
1\r\nHost:
1\r\nHost:
1\r\nHost:
1\r\nHost:

1\r\nHost:
1\r\nHost:
1\r\nHost:
1\r\nHost:
1\r\nHost:
1\r\nHost:
1\r\nHost:
1\r\nHost:

test.

test

test

test
test

test.
test.
test.
test.
test.
test.
test.
.com\r\n\r\n

test

com\r\n\r\n

.com\r\n\r\n
test.
test.
test.
test.

com\r\n\r\n
com\r\n\r\n
com\r\n\r\n
com\r\n\r\n

.com\r\n\r\n
test.

com\r\n\r\n

.com\r\n\r\n
.com\r\n\r\n

com\r\n\r\n
com\r\n\r\n
com\r\n\r\n
com\r\n\r\n
com\r\n\r\n
com\r\n\r\n
com\r\n\r\n



Defeating Input Sanitization

» Repeat existing characters instead of
injecting new ones

GET
GET
GET
GET
GET
GET
GET
GET
GET

PO O O T T T e e 8

/index.html HTTP/l.1l\r\nHost:

/117777 //index. . html

/index.html

/indeXXXXXXXXXXX.html

/index
/index

/index.
/index.
/index.

.hhhhhhhhhhhtml .
. htmmmmmmmmmmm HTTP/l1.l1l\r\nHost:

HTTP/1
HTTP/1
HTTP/1
HTTP/1
HTTP/1

1\r\nHost:

html HHHHHHHHHHHTTP/1.l\r\nHost:

A 4

html HTTP/11111111111.1\r\nHost:

test.com\r\n\r\n
.1\r\nHost:
.1\r\nHost:
.1\r\nHost:
.1\r\nHost:

test.com\r\n\r\n
test.com\r\n\r\n
test.com\r\n\r\n
test.com\r\n\r\n
test.com\r\n\r\n
test.com\r\n\r\n
test.com\r\n\r\n
test.com\r\n\r\n
test.com\r\n\r\n




Fault Delivery

1. Create network connection to target application.
2. Send our modified input data over the created connection.

3. Wait momentarily for a response.
4. Close the network connection.

* Nagel algorithm

— Delays transmission of small datagrams so
they can be grouped together

— Enabled by default in Windows

— Must be disabled with NO_DELAY flag
* Link Ch 16a



Fault Monitoring



Using a Debugger

* Good for interactive fault testing

» Capture every exception, if possible

— Instead of passing them to the application
first ("First chance")

» Access-violation exceptions are the most
important

— Indicate that data structures used to read or
write to RAM were corrupted



CNIT 127: Exploit Development

Ch 17: The Art of Fuzzing

The

Shelle ()(|(‘l S
"Handbook




Static Analysis

* Analyzing code that is not running

 Source code or binary
* Many bugs found this way are unimportant
in practice

— Because there is no input from the user that
“reaches” the buggy code

— There's no easy way to determine the
reachability of a bug from static analysis



Fuzzing is Scalable

* An SMTP fuzzer can test any SMTP server
* No need to rewrite it

* Very simple strings may apply to many
protocols

—Such as "../" * 5000



Weaknesses in Fuzzers

* Some parts of code won't be hit by a
fuzzer

— Because it requires special input values we
don't know about

* Fuzzing gets very slow if many parameters
vary

* Fuzzing should be supplemented by static
analysis and runtime binary analysis



SPIKE

» Builds a network packet by adding data
one field at a time to a "spike" data
structure

« Automatically fills in size fields,
checksums, etc.

» Has various sending programs
— Such as generic_send_tcp



SPIKE Functions

» s_string("Hello, world!");
— Adds the literal string Hello World! to the
spike
» s_string_variable("MESSAGE");
— Adds a series of varying strings to the spike
— The first one is MESSAGE

* s_readline();
— Reads a message from the server



Very Simple SPIKE Script

* Enough to fuzz "Vulnerable Server”

GNU nano 2.2.6 File: trun.spk

s_readline();

s_string("TRUN ") ;
s_string_variable("COMMAND") ;




X-Query (for Unix)

» Capture with WireShark

@ Frame 3 (108 bytes on vire, 108 bytes captured)

B Ethernet 11, Sec: 00:50:00:80:51:5¢, Dst: (8:00:20:05:43:63
B Intermet Protocol, Sec Addr: 152,168,1,101 (192,168,1.101), Dst Addr: 152.168.1.104 (152.168.1.104)
B User Dotagram Protocol, Sec Port: 34130 (34130), Dst Port: xdmcp (177)

B X Disploay Manager Control Protecol
Version: 1
Opcode: Request (0x0007)
Message length: &0
Display musber: 2
8 Connections (1)
B Cormection 1: 152,163.1.101
Twe: Internet
Rddress: 192.168.1.104
RAhenticaticn nane:
Ruthenticaticn data (0 bytes)
B Asthorization nases (2)
Authorization nase: MIT-MGIC-COOKIE-L
Asthorization nase: XC-QERY-SEORITY-1
Mot acturer display 1D




Spike Script (Partial




Project Walk-Through
Fuzzing with SPIKE

:~/spike# generic_send tcp 172.16.1.129 9999 trun.spk 0 0
Total Number of Strings is 681
Fuzzing
Fuzzing Variable 0:0
line read=Welcome to Vulnerable Server! Enter HELP for help.
Fuzzing Variable 0:1
Variablesize= 5004
Fuzzing Variable 0:
Variablesize= 5005
Fuzzing Variable 0:
Variablesize= 21
Fuzzing Variable 0:
Variablesize= 3
Fuzzing Variable 0:
Variablesize= 2
Fuzzing Variable 0:
Variablesize= 7
Fuzzing Variable 0:
Variablesize= 48
rG

: ~/spike# J}




