
CNIT 127: Exploit Development  
Vulnerability Discovery 
Ch 16: Fault Injection

Updated 4-4-17



Fault Injection

• Long used to verify the fault tolerance of 
hardware, such as 
– Automobile and airplane components 
– Coffee makers 

• Faults are injected through 
– Pins of integrated circuits 
– Bursts of EMI (Electromagnetic Interference) 
– Altered voltage levels, etc.



QA (Quality Assurance)

• Engineers test software for weaknesses 
with fault injection 

• Automating these tests makes their work 
much more efficient 

• They also use manual auditing techniques 
– Reverse engineering 
– Source code auditing



Topics

• Design Overview 
• Fault Monitoring 
• Putting It Together



Design Overview



Input Generation

• Select input that uses esoteric and 
untested software features 

• This request uses the uncommon .ida 
filetype 
– An ISAPI filter included in IIS web server



Generating Input

• Manual generation 
– Build inputs in a text editor 
– Time-consuming, but produces best results 

• Automated generation 
– Creating fake input with a program 
– May waste time on buggy input



Generating Input

• Live capture 
– Inject faults directly into live network traffic 
– Requires complex adjustment of data size 

fields, checksums, etc. 

• Fuzz generation 
– Researchers noticed core dumps when using a 

dial-up modem during a thunderstorm 
– Random data injection found many new faults



Fault Injection

• Open-source apps 
– Can be recompiled with special added code 

to improve fuzzing 
– Such as American Fuzzy Lop (link Fuzz 15) 

• Closed-source apps 
– Only input data is modified



Modification Engines

• To find buffer overflows 
– Inject variable-sized data to elements 
– Use non-alphanumeric characters to delimit 

elements 
– Inject into elements, without altering 

delimiters





Defeating Input Sanitization

• Repeat existing characters instead of 
injecting new ones



Fault Delivery

• Nagel algorithm 
– Delays transmission of small datagrams so 

they can be grouped together 
– Enabled by default in Windows 
– Must be disabled with NO_DELAY flag 
• Link Ch 16a



Fault Monitoring



Using a Debugger

• Good for interactive fault testing 
• Capture every exception, if possible 
– Instead of passing them to the application 

first ("First chance") 

• Access-violation exceptions are the most 
important 
– Indicate that data structures used to read or 

write to RAM were corrupted 



CNIT 127: Exploit Development  
 

Ch 17: The Art of Fuzzing



Static Analysis

• Analyzing code that is not running 
• Source code or binary 
• Many bugs found this way are unimportant 

in practice 
– Because there is no input from the user that 

"reaches" the buggy code 
– There's no easy way to determine the 

reachability of a bug from static analysis



Fuzzing is Scalable

• An SMTP fuzzer can test any SMTP server 
• No need to rewrite it 
• Very simple strings may apply to many 

protocols 
– Such as "../" * 5000



Weaknesses in Fuzzers

• Some parts of code won't be hit by a 
fuzzer 
– Because it requires special input values we 

don't know about 

• Fuzzing gets very slow if many parameters 
vary 

• Fuzzing should be supplemented by static 
analysis and runtime binary analysis



SPIKE

• Builds a network packet by adding data 
one field at a time to a "spike" data 
structure 

• Automatically fills in size fields, 
checksums, etc. 

• Has various sending programs 
– Such as generic_send_tcp



SPIKE Functions

• s_string("Hello, world!"); 
– Adds the literal string Hello World! to the 

spike 

• s_string_variable("MESSAGE"); 
– Adds a series of varying strings to the spike 
– The first one is MESSAGE 

• s_readline(); 
– Reads a message from the server



Very Simple SPIKE Script

• Enough to fuzz "Vulnerable Server"



X-Query (for Unix)

• Capture with WireShark



Spike Script (Partial)



Project Walk-Through 
Fuzzing with SPIKE


