DNS Security

Ch 1: The Importance of DNS Security

Updated 8-21-17
DNS is Essential

- Without DNS, no one can use domain names like ccsf.edu
- Almost every Internet communication begins with a DNS resolution
Topics

• DNS Under Attack
• DNS Assisting Attacks
• DNS Traffic as a Gauge of Malicious Activity
• Lack of DNS Authentication and Privacy
DNS Under Attack
Microsoft (2001)

- In 2001, Microsoft's DNS servers were attacked
 - Link Ch 1a

Attack knocks out Microsoft Web sites

By Robert Lemos
Staff Writer, CNET News

Network attackers overwhelmed Microsoft’s connection to the Internet on Thursday, causing traffic to the company’s major Web sites to slow to a crawl.
Single Point of Failure

- Microsoft's network went through a single switch at that time
- 25% of the 1000 largest companies had a centralized DNS architecture at that time
- Companies moved to distributed architectures
'Zombie' PCs caused Web outage, Akamai says

By Robert Lemos and Jim Hu
Staff Writers, CNET News

The attack that blacked out Google, Yahoo and other major Web sites earlier this week involved the use of a "botnet"--a large network of zombified home PCs--Internet infrastructure provider Akamai Technologies said Wednesday.

The attack, which blocked nearly all access to Apple Computer, Google, Microsoft and Yahoo's Web sites for two hours on Tuesday, took aim at the key domain name system (DNS) servers run by Akamai. These servers translate word-based URLs, such as www.microsoft.com, into

• Botnet defeated distributed architecture
 – Link Ch 1b
2002 Attack on DNS Root Servers

• Attacked all 13 root servers simultaneously
• ICMP flood, 900 Mbps
 – Links Ch 1c, 1d
Defenses in 2002

• The attack had little effect, because
• Root DNS servers are vastly over-provisioned
• Attack was short; 1 hour
 – DNS records were cached in downstream servers
2007 Attack on DNS Root

- Six root servers attacked from Asia
- Volume 1 Gbps per server, bogus DNS requests
- Only two were affected, because they did not yet have Anycast configured
- Anycast allows one IP address to be shared by many different servers
 - Traffic automatically goes to closest working server via BGP
 - Link Ch 1e
2007 Attack on DNS Root

The attack on L-root in the week of 5 February 2007 (source: RIPE NCC dnsmon)
Tracing DNS

Root

com

.net

.edu

ccsf.edu

ns3.ccsf.edu
Tracing DNS

- Use the `+trace` option with `dig`
Tracing DNS

```
Sams-MacBook-Air-2:~ sambowne$ dig ccsf.edu +trace
; <<>> DiG 9.8.3-P1 <<>> ccsf.edu +trace
;; global options: +cmd
. 2859 IN NS l.root-servers.net.
 2859 IN NS a.root-servers.net.
 2859 IN NS f.root-servers.net.
 2859 IN NS k.root-servers.net.
 2859 IN NS e.root-servers.net.
 2859 IN NS c.root-servers.net.
 2859 IN NS m.root-servers.net.
 2859 IN NS h.root-servers.net.
 2859 IN NS i.root-servers.net.
 2859 IN NS b.root-servers.net.
 2859 IN NS g.root-servers.net.
 2859 IN NS d.root-servers.net.
 2859 IN NS j.root-servers.net.
;; Received 228 bytes from 8.8.8.8#53(8.8.8.8) in 537 ms
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.
edu. 172800 IN NS d.edu-servers.net.
edu. 172800 IN NS e.edu-servers.net.
edu. 172800 IN NS f.edu-servers.net.
edu. 172800 IN NS g.edu-servers.net.
;; Received 261 bytes from 202.12.27.33#53(202.12.27.33) in 626 ms
ccsf.edu. 172800 IN NS ns3.csu.net.
ccsf.edu. 172800 IN NS rudra3.ccsf.cc.ca.us.
ccsf.edu. 172800 IN NS ns4.cenic.org.
ccsf.edu. 172800 IN NS ns5.cenic.org.
ccsf.edu. 172800 IN NS ns6.cenic.org.
;; Received 164 bytes from 192.31.80.30#53(192.31.80.30) in 275 ms
ccsf.edu. 3600 IN A 147.144.1.212
;; Received 42 bytes from 137.164.29.69#53(137.164.29.69) in 19 ms
Sams-MacBook-Air-2:~ sambowne$
```
DNS Caching

- "Resolver" servers cache content
- Clients rarely query the root
DNS Cache Poisoning

- Malicious altering of cache records redirects traffic for users of that server
- 2005 attack redirected traffic for more than 1000 companies
 - Link Ch 1g, from 2005

DNS Poisoning Scam Raises Wariness of ‘Pharming’

A new attack using DNS cache poisoning has raised concerns about "pharming," a next-generation phishing scam in which malware or DNS hacks are used to invisibly redirect victims to spoofed web sites.

DNS cache poisoning injects false information into DNS servers, which route Internet traffic by matching domain
Kaminsky DNS Vulnerability

- Serious vulnerability in 2008
- Allowed poisoning caches on many servers
- Patched before it was widely exploited
 - Link Ch 1h
DNSChanger
From Wikipedia, the free encyclopedia

DNSChanger was a DNS hijacking Trojan active from 2007 to 2011. The work of an Estonian company known as Rove Digital, the malware infected computers by modifying a computer’s DNS entries to point toward its own rogue name servers, which then injected its own advertising into Web pages. At its peak, DNSChanger was estimated to have infected over 4 million computers, bringing in at least US$14 million in profits to its operator from fraudulent advertising revenue.[1]

• Changed local DNS server address
 – Link Ch 1h
DNS Assisting Attacks
Wannacry Ransomware

- Caused hospitals across England to divert emergency patients in May 2017
- Used NSA-developed attacks leaked by "Shadow Brokers" (Russians)
- Microsoft released a patch but hospital systems didn't install it in time
 - Link Ch 1y
How to Accidentally Stop a Global Cyber Attacks

May 13, 2017 MalwareTech ms17-010, ransomware, worm 442

have to be propagated using another method). I was quickly able to get a sample of the malware with the help of Kafeine, a good friend and fellow researcher. Upon running the sample in my analysis environment I instantly noticed it queried an unregistered domain, which I promptly registered.

Darien Huss
@darienhuss

#WannaCry propagation payload contains previously unregistered domain, execution fails now that domain has been sinkholed

10:29 AM - May 12, 2017

65 1,458 2,186

• Link Ch 1z1
Is the Hacker Hutchins a Good Guy or Bad Guy?

Jeff John Roberts
Aug 05, 2017

• Saved American hospitals & other businesses by freezing Wannacry
• Arrested in the US after DEF CON; accused of selling banking malware
 – Link Ch 1z, 1z2
Dynamic DNS (DDNS)

• Allows the IP address of a domain name to change quickly
• This allows home users to host servers on transient addresses
• Abused by botnet operators, phishers, and malware download sites
 – Change address rapidly to avoid detection and shutdown
Fast Flux DNS

• Changes DNS addresses rapidly
• Hides servers behind reverse proxies that rapidly change
• Makes it difficult to find the central servers
 – Link Ch 1j
Packet Amplification

• Smurf attack
 – PING echo request sent to a broadcast address
 – Many replies for each request
DNS Amplification

- Find a domain name that gives a large response
- Also called "DRDoS Attack" (Distributed Reflection and Amplification Denial of Service)
 - Link Ch il

![Diagram showing the relationship between attacker, DNS server, and target in a DNS amplification attack.]
dig any yahoo.com

Sams-MacBook-Air-2:~ sambowne$ dig any yahoo.com

; <<>> DiG 9.8.3-P1 <<>> any yahoo.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16354
;; flags: qr rd ra; QUERY: 1, ANSWER: 14, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
@ IN ANY

;; ANSWER SECTION:
yahoo.com. 1632 IN A 98.139.183.24
yahoo.com. 1632 IN A 206.190.36.45
yahoo.com. 1632 IN A 98.138.253.109
yahoo.com. 1632 IN MX 1 mta5.am0.yahoodns.net.
yahoo.com. 1632 IN MX 1 mta7.am0.yahoodns.net.
yahoo.com. 1632 IN MX 1 mta6.am0.yahoodns.net.
yahoo.com. 21432 IN NS ns1.yahoo.com.
yahoo.com. 21432 IN NS ns5.yahoo.com.
yahoo.com. 21432 IN NS ns2.yahoo.com.
yahoo.com. 21432 IN NS ns8.yahoo.com.

;; Query time: 36 msec
;; SERVER: 8.8.8.8#53(8.8.8.8)
;; WHEN: Mon Aug 26 16:59:24 2013
;; MSG SIZE rcvd: 337
dig any yahoo.com

- Request: 69 bytes
- Reply: 379 bytes
- Amplification: 5.5 x
dig any ietf.org

- Large DNSSEC signatures
dig any ietf.org

- Request: 28 bytes (+66 header)
- Reply: 4183 bytes (+ headers)
- Amplification: 45 x (but via TCP)
Extension Mechanisms for DNS (EDNS)

• Allows transmission of larger packets via UDP
• Normal max. is 512 bytes
• This extends it to larger values, such as 4096
• Essential for DNSSEC efficiency, but will make DNS amplification much more powerful
 – Link Ch 1k
DNS as a Conduit of Attacks

• Sinit Trojan (2003)
 – Used port UDP 53
 – Allowed by firewalls
 • Link Ch 1m

How It Works:
The Sinit Trojan has a communication protocol based on six types of packets, each one prefixed with a byte of value 1-6 and maximum size of 512 bytes. It listens on UDP port 53 and also a high-numbered random UDP port. Either port will respond to the protocol packets described below:
DNS Traffic as a Gauge of Malicious Activity
DNS Monitoring

- Infected machines often make many DNS queries
- Spam relays make DNS requests to find addresses of mail servers
- Botnets often make many DNS requests to obscure domains
Conficker Worm Domains

- Algorithm made 50,000 new domains per day
- Registrars tried to block them all
 - Links Ch 1u, 1v

<table>
<thead>
<tr>
<th>Variant, Date, Index, Hostname</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, 02/12/2009, 0, puxqy.net</td>
</tr>
<tr>
<td>A, 02/12/2009, 1, elvyodjjtao.net</td>
</tr>
<tr>
<td>A, 02/12/2009, 2, ltxbshpv.net</td>
</tr>
<tr>
<td>A, 02/12/2009, 3, ykjzaluthux.net</td>
</tr>
<tr>
<td>A, 02/12/2009, 4, lpiishmjlbl.net</td>
</tr>
<tr>
<td>A, 02/12/2009, 5, arpsyp.com</td>
</tr>
<tr>
<td>A, 02/12/2009, 6, txkjnucnth.org</td>
</tr>
<tr>
<td>A, 02/12/2009, 7, vhslzulwn.org</td>
</tr>
<tr>
<td>A, 02/12/2009, 8, jcqavkkhp.net</td>
</tr>
<tr>
<td>A, 02/12/2009, 9, dmszsyfp.info</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>B, 02/12/2009, 0, tvxwoajfwad.info</td>
</tr>
<tr>
<td>B, 02/12/2009, 1, blojvbcbrewx.biz</td>
</tr>
<tr>
<td>B, 02/12/2009, 2, wimmugmq.biz</td>
</tr>
<tr>
<td>B, 02/12/2009, 3, fwnvlja.org</td>
</tr>
<tr>
<td>B, 02/12/2009, 4, umgrzaybbf.ws</td>
</tr>
<tr>
<td>B, 02/12/2009, 5, btgoyr.cc</td>
</tr>
<tr>
<td>B, 02/12/2009, 6, zboycplmkhc.cc</td>
</tr>
<tr>
<td>B, 02/12/2009, 7, qszphbn.biz</td>
</tr>
<tr>
<td>B, 02/12/2009, 8, xqdvmaus.cn</td>
</tr>
<tr>
<td>B, 02/12/2009, 9, wgrrrrr.biz</td>
</tr>
</tbody>
</table>
From Link Ch 1q
Blocking DNS Resolution for Known Malicious Domains

OpenDNS
OpenDNS Business Solutions / Premium DNS / OpenDNS Enterprise for Retail and Hospitality

Premium DNS

The fastest, safest, smartest DNS service on the planet.

More than 50 million people, nearly 2% of the world’s Internet users, rely on OpenDNS. Choose OpenDNS Premium DNS for your network. OpenDNS is the largest and most reliable recursive DNS service available providing a better Internet experience to more than 50 million Internet users around the world.
OpenDNS

• Anycast for reliability
• Reports of DNS activity for management
• Blocks malicious servers
• Can enforce other rules like Parental Controls
Storm Worm (2007)

Gathering 'Storm' Superworm Poses Grave Threat to PC Nets
Bruce Schneier 10.04.07

- Distributed C&C (Command and Control) via a peer-to-peer system
- Fast flux DNS
- Mutates every 30 minutes
 - Link Ch 1s
Microsoft Intercepts 'Nitol' Botnet And 70,000 Malicious Domains

• Microsoft took over the 3322.org domain, with authorization from a court order, in 2012

• Controversial process
 – Only temporary botnet disruption
 – Takes down C&C servers controlled by other researchers; "collateral damage"
 – Link Ch 1t
Lack of DNS Authentication and Privacy
DNS Monitoring

• DNS monitoring shows every domain visited
• Used by security team to monitor network usage

```python
#!/usr/bin/env python
from scapy.all import *

def findDNS(p):
    if p.haslayer(DNS):
        print p[IP].src, p[DNS].summary()

sniff(prn=findDNS)
```

```
root@kali:~/packt# python dnsmon2.py
172.16.1.187 DNS Qry "yahoo.com."
172.16.1.187 DNS Qry "yahoo.com."
172.16.1.2 DNS Ans "2001:4998:44:204::a7"
172.16.1.2 DNS Ans "98.138.253.109"
172.16.1.187 DNS Qry "109.253.138.98.in-addr.arpa."
172.16.1.2 DNS Ans "i11.fp.vip.ne1.yahoo.com."
```
Intrinsic Protocol Weakness

• DNS requests and responses are not encrypted
• No strong authentication
 – Responses cannot be fully trusted
• Responses can be spoofed or intercepted and modified
• Altered responses may be cached for a long time
Financial Impacts and Intangible Losses

- **Availability:** DNS outage causes direct loss of revenue
- **Fraud:** Modified DNS services can
 - Send spam
 - Drive users to phishing sites
 - Connect bots to C&C servers
 - Locate malware download sites
Estonia says the country's websites have been under heavy attack for the past three weeks, blaming Russia for playing a part in the cyber warfare.

Many of the attacks have come from Russia and are being hosted by Russian state computer servers, Tallinn says. Moscow denies any involvement.