Ch 6: DNSSEC and Beyond

Updated 11-22-16
DNSSEC
Objectives of DNSSEC

• Data origin authentication
 – Assurance that the requested data came from
 the genuine source

• Data integrity
 – Assurance that the data have not been
 altered
Development of DNSSEC

• Record signatures use public-key cryptography to verify authenticity of DNS records
• RFC 2065 (1997): SIG and KEY records
• RFC 2535 (1999): NXT record - denial of existence of a record
• 2003: DS (Delegation Signer) record
 – Allows secure delegation to child zones
 – SIG, KEY, NXT evolved to RRSIG, DNSKEY, NSEC
Development of DNSSEC

• RFC 3757 (2004)
 – Zone-Signing Key (ZSK)
 – Key-Signing-Key (KSK)
 – Secure Entry Point (SEP)
 • A flag used to identify a KSK

• 2005
 – NSEC replaced by NSEC3
Figure 53: The process of signing the resource records of a DNS zone. Using a public key cryptography algorithm, we first generate a key pair, consisting of a private and a public key. A set of records (RR set) are passed through a hash function (such as SHA1 or SHA-256). The private key is then used to sign the hash of the selected resource records using an algorithm such as RSA, DSA or Elliptic Curve. The resource records, along with their corresponding signature and public key are published in the zone file.
Man-in-the-Middle Attack

- Attacker generates two “false” key pairs
- Attacker intercepts the genuine keys and send false keys out
- Client trusts the Attacker's data

• Trusted third party prevents this attack
 – The root of DNS
Hierarchical Chain of Trust
The Delegation Signer (DS) Record

• Links in the chain of trust
• DS record contains a hash of a zone's public key
• To make performance better, the zone key may be separated into
 – Zone Signing Key (ZSK) and
 – Key Signing Key (KSK)
Figure 56: Delegation Signer (DS) records are used to establish a chain of trust in DNSSEC between a parent and a child.
Authenticated Denial of Existence
NSEC and NSEC3 Records

• Sort all domain names in zone in alphabetical order
 – a.example.com with A, AAAA, RRSIG
 – c.example.com

• NSEC Record
 – a.example.com TTL IN NSEC c.example.com A AAAA RRSIG
 – Nothing between a.example.com and c.example.com

• This record proves there is no b.example.com
Example

~ $dig a.b.c.d.us. +dnssec

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>us.</td>
<td>21599</td>
<td>IN</td>
<td>NSEC</td>
<td>0-.us.</td>
<td>NS</td>
<td>SOA</td>
<td>RRSIG</td>
<td>NSEC</td>
<td>DNSKEY</td>
</tr>
</tbody>
</table>

- Proves there is no *.us

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CZZH.us.</td>
<td>21599</td>
<td>IN</td>
<td>NSEC</td>
<td>D-.us.</td>
<td>NS</td>
<td>RRSIG</td>
<td>NSEC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Proves there is no d.us
NSEC Information Disclosure

• Easy to find all domains in a zone
• Like a zone transfer
• `dig *.se +dnssec`
 – Reveals first valid hostname
• Dig for valid hostname* to find next one
• NSEC3 fixes this problem
NSEC3 Hostnames are Hashed and Salted

• Can be hashed many times
Algorithm and Salt in Record

The presentation format[^45] of the record also contains a hash algorithm identifier (e.g., SHA1 etc.), a flags field, the number of hashing iterations executed, and the salt used to seed the hash:

```
<Hashed_owner_name.zonename> <TTL> <CLASS> NSEC3
<Algorithm ID> <Flags> <Iterations> <Salt>
<Next_hashed_owner_name> <List of Types at the original owner name>
```
dig 9.8.3-P1 a.b.cia.mil +dnssec

; <<>> DiG 9.8.3-P1 <<>> a.b.cia.mil +dnssec
; global options: +cmd
; Got answer:
; -->HEADER<-- opcode: QUERY, status: NXDOMAIN, id: 2162
; flags: qr rd ra ad; QUERY: 1, ANSWER: 0, AUTHORITY: 8, ADDITIONAL: 1

; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 512
; QUESTION SECTION:
;a.b.cia.mil. IN A

; AUTHORITY SECTION:
mil. 1800 IN SOA CON1.NIPR.mil. DISA\COLUMBUS\NS\MBX\HOSTMASTER-DOD-NIC.
MAIL.mil. 20130901 3600 900 1209600 10800
mil. 1800 IN RRSIG SOA 8 1 21600 20131216182101 20131209182101 51921 mil. VtXu
YT/snP5dafjC1MH8raTXLXLm/LJ6EnEOCF53B3DVZM3u wkNkqG2X gP0N7eZi385SYovdC+5nQVTYoHzX4m6h4LvMte2S08k4M05AgDIN
ov AlWz3CPxh35s9jcc2uhr26rJr2BrHabNv51Nzu5GhAXn83tSxvdNhGzH P4I0Anc=
UN6A0H9U9VVDKVNUE91LQMKBZ8DKNP6OHG.mil. 10800 IN NSEC3 1 0 10 EAAA UQ3DUC8QJRQ7B1FSFEOJ3ANEN2R04V4LL NS SOA RR
SIG DNSKEY NSEC3PARAM
UN6A0H9U9VVDKVNUE91LQMKBZ8DKNP6OHG.mil. 10800 IN RRSIG NSEC3 8 2 10800 20131216182101 20131209182101 51921 mil.
YfFhajnoMF1Fwo+poYFqybK5n/jg01w+hCScfaIoafAzOPVEjjGRR5Mke A2p+SBq5mCqZkuUocSFIV/U=lyxG801337Es01G/uSJUpl
qCFQPoK9b BpFXqrNWIFZivSeswNYe2aA4CpZhb8hqNMP9u+nv05y6p0HkGHKeT Rk/wc=
LRIPSTTJ7QATH6L9LNPPTS94KLSK4A.mil. 10800 IN NSEC3 1 0 10 EAAA LSJHCK0HN8GRT540MJ6PS9K39BE5D5 NS
LRIPSTTJ7QATH6L9LNPPTS94KLSK4A.mil. 10800 IN RRSIG NSEC3 8 2 10800 20131216182101 20131209182101 51921 mil.
lmbtvgTV5ywyxhDF3RMhB50LQWUS8EK9WIT9JkTvmynR1EImGwMzaJk FVX9D+iXm/NLJhZjD7CTdNw6BmNP0L7wVwvKkfbF2U9qJIK
REPfVpQk 3efnCdt/Gx8UVcYmIHZGmCNJM74Fbm2D8HUCVbwk6YIYPR4M3sXc1JaB 2FhKGsc=
QNI13VV1NPFP23E3KBGFAMA7KSSQ4T8R0909.mil. 10800 IN RRSIG NSEC3 8 2 10800 20131216182101 20131209182101 51921 mil.
LfFnMzhth1/ePop7Hx18Bk/rkxj3vUinIT6iUam7N4nZvG3nrTLX6 a9TYL9J09SI1ZlmdunpfxsHjxq1RdN3w7tcFnnLgphZKko
EbtLtt1iq +fN5jLAFjHkw8Gc11q8lwzBndHSCQ/QTZw+kLJD/27L79za74MXUj1lE GVJSs4=

Query time: 154 msec
SERVER: 8.8.8.8#53(8.8.8.8)
WHEN: Tue Dec 10 08:43:49 2013
MSG SIZE rcvd: 1034
Making a Validating Resolver

• See Proj 7x
Weaknesses of DNSSEC
Lack of Protection Between User Devices and Resolvers

- Attacker in the middle has enough info to perfectly forge responses
 - Unless DNSSEC is enforced in the client's browser
Lack of Protection of Glue Records

- DNSSEC only protects Resource Records if they are authoritative in the zone.
- Glue records are resource records that facilitate a resolution that is delegated from a parent zone to a child zone.
- They are owned by the child zone but appear in the parent zone.
- So they are non-authoritative.
- Not protected by DNSSEC.
Key Changes Don't Propagate

• Keys can
 – Roll over
 – Be Revoked
 – Signatures can expire

• These events do not propagate down the DNS tree
NSEC3 Denial of Service

• If a zone is insecurely delegated to another zone
• And it includes NSEC3 records
• A MITM can block resolution of a domain
• Or delegate the resolution to another server and change the A record
• Enabling spoofing, cookie-stealing, etc.
Re-Addressing Replay Attack

• If a server moves to a new hosting provider
• The old IP address can be used until the signatures expire
• Because there's no way to push signature expiration from authoritative servers to resolvers
NSEC3 Still Allows Zone Walking

• An offline dictionary attack can be used to guess the hashes
• It's the same as cracking password hashes
No Protection of DNS or Lower Layer Header Data

• The AD flag is part of the DNS header
 – Authenticated Data flag, indicating that the response data was verified by DNSSEC
 – Can't be trusted, because
• Can be changed by a MITM
• DNSSEC won't detect that
DNSSEC Data Inflate Zone Files and DNS Packet Sizes

- Small requests lead to large responses
- UDP allows spoofing the source IP address
DNSSEC Increases Computational Requirements on Validators and Servers

- Verifying signatures
- Calculating hashes for NSEC3 records
DNSCurve
Encrypted Packets

- Operates at layer 2 (Data Link)
- Uses Elliptic Curve Cryptography
- Each request and response packet is encrypted in its entirety
 - DNSSEC doesn't encrypt any data, it just signs it
- ECC keys are 256 bits long
- Calculation is much faster than RSA
DNSCurve Limitations

• Not yet an IETF standard
• Does not provide end-to-end security
 – Just from endpoint to resolver
• Name-server names need to be longer to include a Base-32 encoded 53-byte public key
 – Makes responses even larger
• DNS Queries may exceed 255 bytes, which will be dropped by old middleware
• Key compromise requires renaming the server
 – And manual update of NS record in the parent zone