
Sam Bowne Nov 10, 2024

11 Sorting
For COMSC 132

•Bubble sort

• Insertion sort

• Selection sort

•Quicksort

• Timsort

Topics

• Compare adjacent elements

• Swap if not in order

Bubble sort

• Takes n-1 operations to move the largest
element to the top

• Next cycle takes n-2 operations, etc.

(n-1) + (n-2) + (n-3) + ... + 2 + 1

 1 + 2 + 3 + ... + (n-2) + (n-1)

--

 n + n + n + ... + n + n
 # operations = n(n-1)/2

Bubble sort

• Complexity O(n2)

• Too slow for use on large lists

Bubble sort

Insertion sort

• The first insertion takes one comparision

• The next one takes two, etc.

 1 + 2 + 3 + ... + (n-2) + (n-1)

• Complexity O(n2)

• Good to use when the list has a small

number of elements

• And the data arrives one by one

Insertion sort

• Move smallest element to position 1

• Move next-smallest to position 2

• etc.

Selection sort

• First element takes (n-1) comparisons

(n-1) + (n-2) + (n-3) + ... + 2 + 1

• Complexity O(n2)

• Too slow for use on large lists

• Note: diagram in the textbook is wrong

• The image on the previous slide is from

Wikipedia

Selection sort

• Divide and conquer

• Choose a pivot element

• Such as the first element

• Place all smaller elements to its left

• All larger elements to its right

• Repeat for the two sublists

Quicksort

Quicksort

Quicksort

Quicksort

• Partition takes O(n) time

• Must repeat O(log n) times

• Complexity O(n log n) for average case

• Worst case is O(n2)

• Efficient for large lists

Timsort

• Default sorting algorithm for Python

• Divide list into blocks (or runs) of 32 or 64

• Use insertion sort on each block

• Merge blocks with merge sort

Timsort

Insertion sort

Merge sort

Comparing Sorting Algorithms

Ch 11

