12 Selection Algorithms

For COMSC 132

Sam Bowne Nov 10, 2024



Topics

» Selection by sorting
e Randomized selection
e Deterministic selection



Selection

* Given an unordered list
* You can find these things without sorting
 Mean (average)
* Mode (most common element)
* But you need to order the list to find
* Median (the middle-sized element)
» kth smallest element



Selection by sorting

» Sorting the list makes it easy to find all those
items

e But it Is more work than necessary
e There are more efficient selection methods



Randomized selection

* Based on quicksort algorithm
e | et's review that first



Quicksort

* Divide and conquer

1. Choose a pivot element
* Such as the first element

2. Partition the list around the pivot
* Place smaller elements to its left
* And larger elements to its right

3. Repeat for the two sublists



Quicksort
']--

[4] [5] 6] [7] 8]

Index —

pivot point

BB JENCICACE

Left sublist Right sublist

* Notice that the pivot is already at its correct
iIndex

* [t won't move any more as sorting proceeds



Randomized selection

e Finds the kth smallest element
* In an unordered list
* Also called quickselect

1. Choose a pivot and partition the
elements into two sublists

2. Compare index of pivot with desired
value k

3. Recursively look in appropriate sublist



Randomized selection

* Seeking 3 smallest element (k = 2)

45 | 23 | 87 | 12 | 72 - 54 | 32 | 52

Assume, 45 is the pivot point

After first iteration, 45 is
4 | 23 |32 |12 |45 | 72 | 54 | 87 | 52 placed at its correct

position.
Sub-list with values
>45 Sub-list with values
>45
4 | 23 | 32 | 12 72 | 54 | 87 | 52

Now, consider only the left sublist
as the value of k < index of the split point,
l.e. (2<4)



Randomized selection

12 Assuming 4 as the pivot point.

4 | 23 | 32
23 | 32 | 12
12 |ERSll 32

Now, 4 is placed as its correct position,
in other words, at first place.
Now consider the right sublist.

Now considering 23 as the pivot point,
after the partitioning, it is placed at its correct position,
I.e. at 3rd position, which is required, so it will be returned.



Randomized selection

def quick_select(array_list, start, end, k):
split = partition(array_list, start, end)
1f split ==
return array_list[split]
elif split < k:
return quick_select(array_list, split + 1, end, k)
else:
return quick_select(array_list, start, split-1, k)

* Worst-case complexity is O(n?)

* When all pivots are at the wrong end, so the
list only shrinks by 1 per iteration



Deterministic selection

* Finds the kth smallest element
* In an unordered list
* Works like randomized selection
* But chooses the pivot more efficiently

* To split the list into two equal halves
(approximately)



Deterministic selection

* The median would split the list in half best
e But it would require sorting the list
* Which is too much work

* So we use median of medians
1. Split list into groups of 5 elements (or 8)

2. Sort the groups, find medians of each
group
3. Use median of the medians for pivot



Deterministic selection

break the whole list into sublists of 5 elements each.

6 457 1023 1 BT T2 72 4 54 | 32 | 52 1 34 | 38 | 13 | 57
Sort the list l Sort the list l Sort the list
6 12 | 23 | 45 | 87 4 32 | 52 | 54 | 72 1 13 | 34 | 38 | 57

Median of this sublist is 23. Median of this sublist is 52.



Deterministic selection

Median of this sublist is 23. Median of this sublist is 52.

!

23 | 52| 34 List of median of each

sublist.

23 | 34| 52 Sort the list.

Median of medians list is 34.

Use 34 as the pivot value, and apply the partition algorithm.
Now, we obtain the following list where 34 is placed at its correct position in the list.

6 |13 |23 | 1 12 | 32 | 4 | 34 | 72 | 52 | 87 | 54 | 38 | 45

Since we wish to obtain the 3rd smallest element, the index of the pivot value is 7
(2<7), so we recursively run the algorithm on the left sublist.



Deterministic selection

* WWorst-case complexity is O(n)

* When all pivots are at the wrong end, so the
list only shrinks by 1 per iteration






