
Sam Bowne Nov 30, 2024

13 String Matching
Algorithms
For COMSC 132

• String notations

• Pattern matching

•Brute force algorithm

•Rabin-Karp algorithm

•KMP algorithm

•Boyer-Moore algorithm

Topics

String notations

String notations

• String example: "Hello, world!"

• Substring example: "Hello"

• Prefix p is the start of the string, like "Hello"

• The remainder is called u, ", World!"

• Suffix d is the end, like "World!"

endswith() and startswith()

• Both of these statements are True

Pattern matching

Pattern matching

• If pattern is found, return its index location

• Otherwise, return "not found" (usually -1)

Brute force algorithm

Brute force

• Compare pattern to the start of the string

• index = 0

• If that doesn't match, increment index and
try again

• Continue until the last possible index value

Brute force complexity

• String has length n
• Target has length m
• Best case complexity is O(n)

• When the first character of Target is not

present in the string at all

• Ex: find "FAA" in "AABBCCDDEE"

Brute force complexity

• Worst case complexity is O(m*(n-m+1))

• When all the characters in the Target and

String are the same and we want to find all
matches

• Ex: find "AAA" in "AAAAAAAAAA"

Rabin-Karp algorithm

Rabin-Karp algorithm

• Reduce the number of comparisons using
hashing

• A single comparison of hashes replaces
comparing the characters one by one

• Since hashes can collide, verify a match by
comparing the characters one by one

Rabin-Karp algorithm

1.Compute hash of pattern (length m) and of
all possible substrings of the text with length
m

2.Compare hash of pattern to the substring
hashes, one by one

3.If there's a match, verify by comparing the
characters

Rabin-Karp algorithm

KMP algorithm

KMP algorithm

• Use the structure of the target to exclude
some shift values

• Avoiding unnecessary comparisons

Fig. 13.4 in

book is wrong

KMP algorithm

• In this case, there's a possible match 3
characters further

The prefix function

• Finds a pattern within the pattern

• Measures how much benefit can we get

from the previous character comparisons

• Value is the # of characters from the start of

the function that match at this point

The prefix function

• All characters in
the pattern are
different

• prefix() always 0

• Jump to the

location of the
first
mismatched
character

The prefix function

• First 3 characters are all different

• So prefix_function is 0

The prefix function

• Character 4 repeats character 1

• Prefix_function = 1

• Next, try with index 1 shifted to here

The prefix function

• Character 5 repeats character 2, forming the
pattern ab

• Prefix_function = 2

• Next, try with index=2 here

Beginning of KMP-matcher

def KMP_matcher(text, pattern):
 """
 Knuth-Morris-Pratt (KMP) string matching algorithm.

 Args:
 text (str): The text to search in.
 pattern (str): The pattern to search for.

 Returns:
 list: A list of starting indices of all occurrences of the pattern in the text.
 """

The prefix function
 def compute_lps(pattern):
 """
 Computes the longest proper prefix-suffix (LPS) array for the given pattern.
 """
 m = len(pattern)
 lps = [0] * m
 length = 0
 i = 1

 while i < m:
 if pattern[i] == pattern[length]:
 length += 1
 lps[i] = length
 i += 1
 else:
 if length != 0:
 length = lps[length - 1]
 else:
 lps[i] = 0
 i += 1
 return lps

The rest of KMP_matcher
 n = len(text)
 m = len(pattern)
 lps = compute_lps(pattern)
 print("Prefix function:", lps)

 i = 0 # index for text
 j = 0 # index for pattern
 occurrences = []

 while i < n:
 print("Comparing pattern[", j,"]", pattern[j], " to text[:", i, "]", text[i], end = " ")
 if pattern[j] == text[i]:
 print("Match!")
 else:
 print("Mismatch!")
 if pattern[j] == text[i]:
 i += 1
 j += 1

 if j == m:
 occurrences.append(i - j)
 print("Pattern found at index:", i - j)
 j = lps[j - 1]
 else:
 if j != 0:
 j = lps[j - 1]
 else:
 i += 1

 return occurrences

Result

Boyer-Moore algorithm

Boyer-Moore algorithm

Boyer-Moore algorithm

• Uses two heuristics to determine the
maximum possible shift after a mismatch

• Bad character heuristic

• Good suffix heuristic

• Shift the pattern by the longer of the two
distances given by those heuristics

Boyer-Moore algorithm

• Since d is not in the pattern, shift the entire
pattern length

• a is in the pattern, so shift to match it

Bad character heuristic

Bad character heuristic
• Mismatched character is called "bad"

Bad character heuristic

Use smallest shift: Option 1

Good suffix heuristic

Good suffix heuristic
• Shift to match other occurrence of the

good suffix

Good suffix heuristic

Use smallest shift: Option 1

Good suffix heuristic
• Good suffix is aac but only ac has a

match

Good suffix heuristic
• Good suffix is aac but there's no earlier

match in the pattern, even of c

Boyer-Moore algorithm

• Complexity:

• O(m) for preprocessing the pattern

• O(mn) for searching in the worst case

• BUT with an optimization called the "Galli

rule" it's linear in all cases

• m is the length of the pattern

• n is the length of the text

• https://en.wikipedia.org/wiki/

Boyer%E2%80%93Moore_string-search_algorithm

https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string-search_algorithm
https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string-search_algorithm

Summary

• Brute force is inefficient

• Rabin-Karp uses hashing

• KMP uses overlapping substrings in the

pattern to avoid redundant comparisons

• Boyer-Moore is very efficient with the text

and pattern are long

• Most popular algorithm in practice

Ch 13

