13 String Matching
Algorithms

For COMSC 132

Sam Bowne

Topics

e String notations

e Pattern matching

» Brute force algorithm

* Rabin-Karp algorithm

« KMP algorithm

* Boyer-Moore algorithm

String notations

String notations

» String example: "Hello, world!"
* Substring example: "Hello"
* Prefix p is the start of the string, like "Hello"

* The remainder is called u, ", World!"
e Suffix d is the end, like "World!"

endswith() and startswith()

string = "this 1s data structures book by packt publisher”
suffix = "publisher”
prefix = "this"

print(string.endswith(suffix)) #Check 1f string contains given suffix.
print(string.startswith(prefix)) #Check if string starts with given prefix.

e Both of these statements are True

Pattern matching

Pattern matching

e If pattern is found, return its index location
* Otherwise, return "not found" (usually -1)

Text string » a a b a b a a
A ¢ 0
v Y \J

Pattern > b a b

Brute force algorithm

Brute force

 Compare pattern to the start of the string
* Index =0

e [f that doesn't match, increment index and
try again

* Continue until the last possible index value

acbcabcc‘a‘bab‘c‘a a‘c‘bca

. o A e s 4
. § mismatch
v v v V9 v v
alc blc‘a‘c
mismatch
ST
aIch‘c aIc
mismatch
v

Ia c‘b cIa o

..... match (pattern found)
shift the pattern 1 space at
every mismatch

|a|c|b cla

Brute force complexity

* String has length n
* Target has length m
* Best case complexity is O(n)

* When the first character of Target is not
present in the string at all

* Ex: find "FAA" in "AABBCCDDEE"

Brute force complexity

» Worst case complexity is O(m*(n-m+1))

* When all the characters in the Target and
String are the same and we want to find all
matches

* Ex: find "AAA" In "TAAAAAAAAAA'

Rabin-Karp algorithm

Rabin-Karp algorithm

* Reduce the number of comparisons using
hashing

* A single comparison of hashes replaces
comparing the characters one by one

* Since hashes can collide, verify a match by
comparing the characters one by one

Rabin-Karp algorithm

1.Compute hash of pattern (length m) and of
all possible substrings of the text with length
m

2.Compare hash of pattern to the substring
hashes, one by one

3.If there's a match, verify by comparing the
characters

Rabin-Karp algorithm

1 2§34567§891O 11 12 13 14 15 16:17 18 19 20 21:

plublisher plalal] k]t

. Compare the hash of the
substring and the hash of the
. pattern to see if they are equal.

Hash of the pattern- Hash of the pattern-
“packt” “packt”

I p ‘ a | C ‘ K | t '
IHash of substring - "blish"l tash of substring - "packt"l
Di L8l Gl i Lt

KMP algorithm

KMP algorithm

* Use the structure of the target to exclude
some shift values

* Avoiding unnecessary comparisons

alc|b]c|a Fig. 13.4 In
5 book is wrong

KMP algorithm

Text Hlﬂlﬂﬂ..ﬂﬂﬂl---

~ mismatch
Pattern b c| a b C b

blefajofefal

* In this case, there's a possible match 3
characters further

The prefix function

* Finds a pattern within the pattern

* Measures how much benefit can we get
from the previous character comparisons

e \Value Is the # of characters from the start of
the function that match at this point

The prefix function

e All characters In Index wlizilizilia
the pattern are pattem | a | b | c | d |
different et nnstenibonul i) koo

* prefix() always O

¢ Jump 1:0 the Textstring | a b | c |23l b b
location of the AL
first . - : [

. attern | a C e
mismatched ;
character | b

The prefix function

e First 3 characters are all different
* So prefix_functionis 0

R FT EN Y EN EA Y EA A

“rwen [l Lol o oo o]
v o [0 o] | | | [|

The prefix function

* Character 4 repeats character 1
* Prefix_function = 1
* Next, try with index 1 shifted to here

e R
rwen [e o[l e oo
vt 0 o[o] 1] | | | |

The prefix function

» Character 5 repeats character 2, forming the
pattern ab

* Prefix_function = 2
* Next, try with index=2 here

R T EN PR R A Y
| Patem falbfclalbjp]cfale

premsniccacn) 0 b Lo ol Ll sl

Beginning of KMP-matcher

def KMP_matcher(text, pattern):

Knuth-Morris-Pratt (KMP) string matching algorithm.

Args:
text (str): The text to search in.
pattern (str): The pattern to search for.

Returns:
list: A list of starting indices of all occurrences of the pattern in the text.

The prefix function

def compute_lps(pattern):

Computes the longest proper prefix-suffix (LPS) array for the given pattern.
m = len(pattern)

Ips =[0] *m

length=0

i=1

while i < m:
if pattern[i] == pattern[length]:
length +=1
Ips|i] = length
1 +=1
else:
if length != 0:
length = Ips[length - 1]
else:
Ips[i]=0
1 +=1
return Ips

The rest of KMP matcher

n = len(text)

m = len(pattern)

Ips = compute_Ilps(pattern)
print("Prefix function:", Ips)

I =0 #index for text
j =0 # index for pattern
occurrences =[]

while i < n:
print("Comparing pattern[", j,"]", pattern[j], " to text[:", i, "]", text[i], end =" ")
if pattern[j] == text[i]:
print("Match!")
else:
print("Mismatch!")
if pattern[j] == text[i]:
i+=1
j+=1

if j ==m:
occurrences.append(i - j)
print("Pattern found at index:", i - j)
j=Ipsl - 1]

else:

if j!1=0:
j=Ipsl - 1]

else:
i+=1

return occurrences

Result

66

Y
O
o

SRR TR

67 text = "acbcabccababca"”
68 pattern = "acbcad"
69 result = KMP_matcher(text, pattern)

70 print("Pattern found at indices:", result)

Prefix function: [0, e, 0, 1, 0]

Comparing
Comparing
Comparing
Comparing
Comparing
Comparing
Comparing
Comparing
Comparing
Comparing
Comparing
Comparing
Comparing
Comparing
Comparing
Comparing
Comparing
Comparing

Pattern found at in

pattern|
pattern|[
pattern|
pattern|
pattern|
pattern|
pattern|
pattern|[
pattern|
pattern|
pattern|
pattern|[
pattern|
pattern|
pattern|
pattern|
pattern|
pattern|

0
1
2
3
4
5
1
(]
0
0
0
1
0
0
1
0
0
(]
di

2,
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
ice

QO OO OYORY ODODO D

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
(]

text|[:
text|[:
text|[:
text|[:
text[:
text|[:
text|[:
text[:
text|[:
text|[:
text|[:
text|[:
text|[:
text|[:
text|[:
text[:
text|[:
text[:

MR R R OORNOOVUUSE WN RS

Bl bl St b bl bl bt b bl bl bl S St

(=i« B o I o I = i = i = i« LR o I« i Y <

Match!
Match!
Match!
Match!
Match!
Mismatch!
Mismatch!
Mismatch!
Mismatch!
Mismatch!
Match!
Mismatch!
Mismatch!
a Match!

b Mismatch!
b Mismatch!
¢ Mismatch!

a Match!

mlsmatch

0 L

Boyer-Moore algorithm

Boyer-Moore algorithm

1. In this algorithm, we shift the pattern in the direction from left to
right, similar to the KMP algorithm.

2. We compare the characters of the pattern and the text string from
right to left, which is the opposite of what we do in the case of the
KMP algorithm.

3. The algorithm skips the unnecessary comparisons by using the good
suffix and bad character shift heuristics. These heuristics themselves
find the possible number of comparisons that can be skipped. We slide
the pattern over the given text with the greatest offsets suggested by

both of these heuristics.

Boyer-Moore algorithm

* Uses two heuristics to determine the
maximum possible shift after a mismatch

e Bad character heuristic
e Good suffix heuristic

» Shift the pattern by the longer of the two
distances given by those heuristics

Boyer-Moore algorithm

* Since d is not in the pattern, shift the entire
pattern length

* a is In the pattern, so shift to match it

~ ~

“]1 l
v B v v ‘
-.

Bad character heuristic

1. If the mismatched character of the text does not occur in the pat-

tern, then we shift the pattern next to the mismatched character.

2. If the mismatched character has one occurrence in the pattern,
then we shift the pattern in such a way that we align with the mis-
matched character.

3. If the mismatched character has more than one occurrence in the
pattern, then we make the most minimal shift possible to align

the pattern with that character.

Bad character heuristic

e Mismatched character is called "bad"

1 2 3 415 8i7 8 9 10 11 12
totsimg (o | o [[alcfafc]afb]afe
start é:omparing
fro'mhere '

mismatch

- HIHBHI

Since mismatched character 5 :
‘d’ does not occur in the pattern, auﬂ
we shift the pattern next to that :

bad character.

Bad character heuristic

1 2 3:4:5 6 7 8 9 10 11 12 13 14 15 16

TextString | @a | ¢ | a a1 jrch At sani fht jiiar i i Easye |y tat i ic
gstartfcomparing
: from here
mismatch : : . :
: > Use smallest shift: Option 1
Pattem

a C d a C

Since mismatched character ‘a’
: has two occurrences in the
Option 1

a8 lic B al ¢ pattern, we have two options to
for . - shift the pattern that can align

alignment the mismatched charecter.

Pt Jajelalefalc
for

alignment

Good suffix heuristic

1. The matching suffix has one or more occurrences in the

pattern

2. Some part of the matching suffix is present at the start
of the pattern (this means that the suffix of the matched

suffix exists as the prefix of the pattern)

Good suffix heuristic

 Shift to match other occurrence of the
good suffix

8 9 10 11 12

Text Sting ﬂlﬂﬂlﬂlﬂﬂﬂﬂ

start comparing

: from here
mlsmatch

Paten [a | < | = [ﬂl

Good suffix heuristic

wwmﬂlﬂﬂﬂIﬂlﬂﬂﬂﬂ

start comparing

5 from here
mismatch

mmﬂ.ﬂﬂﬂl
Use smallest shift: Option 1
e dnanonn
alignment | _
pomscir gl 11 T T T
alignment .

Good suffix heuristic

* Good suffix is aac but only ac has a
match

9 10 M

PR—
ﬁwwﬂI ﬂﬂlﬂlﬂﬂﬂ

start comparing

onm here
mnsmatch

—
Pattern
HHHHHH

Good suffix heuristic

 Good suffix is aac but there's no earlier
match in the pattern, even of ¢

9 10 1M 12 13

Toxt g ﬂlﬂﬂlﬂlﬂﬂﬂﬂﬂ

start comparing

: : trom here
mnsmatch :

o—
e [+ ﬂﬂl
e

Boyer-Moore algorithm

« Complexity:
* O(m) for preprocessing the pattern
* O(mn) for searching in the worst case

 BUT with an optimization called the "Galli
rule” it's linear in all cases

*m is the length of the pattern

* n is the length of the text

e hitps://en.wikipedia.org/wiki/
Boyer%E2%80%93Moore string-search algorithm

https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string-search_algorithm
https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string-search_algorithm

Summary

* Brute force is inefficient
* Rabin-Karp uses hashing

* KMP uses overlapping substrings in the
pattern to avoid redundant comparisons

* Boyer-Moore is very efficient with the text
and pattern are long

* Most popular algorithm in practice

