2 Introduction to Algorithm Design

For COMSC 132

Sam Bowne

Algorithms

- Well-defined procedure
- Takes input data
- Process it
- Produces desired output

Performance Analysis

- Time complexity
 - Time required to perform task
- Space complexity
 - Memory required to perform task

Linear in n

- As size of problem increases
- Time required grows linearly

```
import time
    for power in range(3, 9):
      n = 10 ** power
      t0 = time.time()
      total = 0
      for i in range(n):
        total += 1
      elapsed = round(time.time() - t0, 4)
      print("{0:>5}".format(elapsed), n)
→ 0.0002 1000
    0.0018 10000
    0.0141 100000
    0.1177 1000000
    1.0664 10000000
    11.5965 100000000
```

import time

```
for power in range(3, 9):
   n = 10 ** power
   t0 = time.time()
   total = 0
   for i in range(n):
      total += 1
   elapsed = round(time.time() - t0, 4)
   print("{0:>5}".format(elapsed), n)
```

Asymptotic notation

- Θ (Theta)
 - Worst-case running time with a tight bound
- O (Big Oh)
 - Worst-case with an upper bound
- Ω (Omega)
 - Lower bound of running time

- Quadratic $O(n^2)$
- Cubic
 O(n³)
- Exponential $O(2^n)$

Time Complexity	Name
0(1)	Constant
O(logn)	Logarithmic
0(n)	Linear
O(nlogn)	Linear-logarithmic
0(n2)	Quadratic
0(n3)	Cubic
0(2n)	Exponential

Table 2.1: Runtime complexity of different functions

Take Largest Term

- We only care about case for large n
- So if
 - Time = $4n^{**}3 + 100n + 1000$
 - Complexity is O(n**3)

O(n**2) Complexity

```
[11] import time
     for power in range(2, 5):
      n = 10 ** power
      t0 = time.time()
       total = 0
       for i in range(n):
        for j in range(n):
           total += 1
       elapsed = round(time.time() - t0, 4)
       print(f'{elapsed:9.4f}', f'{n:>7,}')
₹
       0.0015
                  100
       0.1825 1,000
       12.2375 10,000
```

import time

```
for power in range(2, 5):
    n = 10 ** power
    t0 = time.time()
    total = 0
    for i in range(n):
        for j in range(n):
        total += 1
    elapsed = round(time.time() - t0, 4)
    print(f'{elapsed:9.4f}', f'{n:>7,}')
```

O(2**n) Complexity

```
import time
    for n in range(15, 25):
      t0 = time.time()
      total = 0
      for i in range(2**n):
          total += 1
      elapsed = round(time.time() - t0, 4)
      print(f'{elapsed:9.4f}', f'{n:>7,}')
₹
       0.0048
                   15
       0.0067
                   16
       0.0187
                   17
       0.0277
                   18
       0.0557
                   19
       0.1086
                   20
       0.2344
                   21
       0.4506
                   22
                   23
       0.8724
       1.7665
                   24
```

import time

```
for n in range(15, 25):
   t0 = time.time()
   total = 0
   for i in range(2**n):
       total += 1
   elapsed = round(time.time() - t0, 4)
   print(f'{elapsed:9.4f}', f'{n:>7,}')
```

Bitcoin

- Miners take a block of transactions
 - Add a random "nonce"
 - Calculate SHA256(SHA256(block))
 - If (hash < target):
 - Win! You get a reward.
 - else:
 - Go pick a new nonce

Bitcoin Target Values

- Adjusted to keep average block mining time near 10 minutes
- From https://learnmeabitcoin.com/technical/mining/target/

Bitcoin Difficulty

• From https://www.coinwarz.com/mining/bitcoin/difficulty-chart

Bitcoin is CPU-Hard

- Requires lots of CPU cycles to calculate SHA256
- Ultimate cost is power
- Miners move to locations with cheap electricity

What Countries Mine Bitcoin?

 https:// chainbulletin.com/ bitcoin-mining-map/

Ethereum is Memory-Hard

- Mining requires a data structure called a Directed Acyclic Graph (DAG)
- DAG must be generated in each epoch
- The DAG is currently 5 GB
- It grows with each epoch
 - https://deploi.ca/ethereum-algorithm

https://www.ethernodes.org/countries

Ch 2