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•Brute force

•Recursion

•Divide and conquer

•Dynamic programming

•Greedy algorithms

•Dijkstra’s shortest path algorithm

Topics



• Solving a problem by trying all possibilities

• Can be VERY slow

• Consider a chess game

• Trying to explore all possible moves several 

moves ahead becomes a huge problem 
quickly

Brute force



• Trying to decrypt data without knowing the 
key


• Simply try all possible keys

• Slow but effective if you have enough time

Brute force



Brute force search

• Haystack is 
not sorted


• Must 
search 
through list 
one item at 
a time


• Complexity 
O(n)



Brute force search

import time, random

for n in [100000, 1000000, 10000000]:
  haystack = []
  for i in range(n):
    haystack.append(random.random())
  needles = []
  for rep in range(10):
    needles.append(haystack[random.randint(0, n-1)])

  start = time.time()
  for rep in range(10):
    for i in range(n):
      if needles[rep] == haystack[i]:
        break
  end = time.time()
  elapsed = end - start
  print("Time: ", f'{elapsed:9.4f}', f'{n:,}')



• Algorithm calls itself repeatedly

• Until a condition is fulfilled

Recursion



Factorial by Recursion

def factorial(n):
    # test for a base case
    if n == 0:
        return 1
    else:
    # make a calculation and a recursive call
        return n*factorial(n-1) 
print(factorial(4))



Ackerman's Function



Ackerman's Function

import time

def ackermann(m, n):
    global depth
    depth += 1
    if m == 0:
        return n + 1
    elif n == 0:
        return ackermann(m - 1, 1)
    else:
        return ackermann(m - 1, ackermann(m, n - 1))

for i in range(4):
  depth = 0
  start = time.time()
  a =ackermann(i,  i)
  end = time.time()
  elapsed = end - start
  print("a(", i, ",", i, ") ", f'{elapsed:9.4f}',  depth)



• Split a complex problem into two parts

• Solve them separately

Divide and conquer



Binary search



Binary 
search
• Haystack 

"arr" is sorted

• Test one 

value in the 
middle of the 
list


• Needle "key" 
is either 
below or 
above that


• The 
remaining list 
is 1/2 the size



Binary 
search
• Test various values of n

• Perform each search ten times

• Print out total number of steps required



Binary 
search
• Time 

complexity 
O(log n)


• Making list 
10 times 
longer 
simply 
adds 30 
more steps



Binary search
import random

def binary_search(arr, start, end, key):
    global steps
    while start <= end:  
        steps += 1
        mid = start + (end - start)//2
        if arr[mid] == key:  
            return mid  
        elif arr[mid] < key:  
            start = mid + 1  
        else:  
            end = mid - 1  
    return -1  

for n in [1000, 10000, 100000, 1000000, 10000000]:
  haystack = []
  for i in range(n):
    haystack.append(random.random())
  haystack.sort()

  needles = []
  for rep in range(10):
    needles.append(haystack[random.randint(0, n-1)])

  steps = 0
  for rep in range(10):
    result = binary_search(haystack, 0, n-1, needles[rep]) 
  print("Steps: ", steps, f'{n:,}')



• Divide list in half

• Repeat until each sub-list has only one 

element

• Merge the sublists with elements in order

• Repeat until there's one sorted list

Merge sort



Merge sort



• Splits list in half 
recursively

• Complexity  

O(log n)

• Calls merge() to 

merge the short 
sublists together

merge_sort

import random, time

def merge_sort(unsorted_list): 
    if len(unsorted_list) == 1: 
        return unsorted_list
    mid_point = int(len(unsorted_list)/2)
    first_half = unsorted_list[:mid_point] 
    second_half = unsorted_list[mid_point:] 
    half_a = merge_sort(first_half) 
    half_b = merge_sort(second_half) 
    return merge(half_a, half_b)



• Combines two 
lists into one 
larger, sorted list

• Complexity  

O(n)

merge

def merge(first_sublist, second_sublist): 
    i = j = 0
    merged_list = []
    while i < len(first_sublist) and j < len(second_sublist):
        if first_sublist[i] < second_sublist[j]:
            merged_list.append(first_sublist[i]) 
            i += 1 
        else:
            merged_list.append(second_sublist[j]) 
            j += 1
    while i < len(first_sublist): 
        merged_list.append(first_sublist[i]) 
        i += 1 
    while j < len(second_sublist):
        merged_list.append(second_sublist[j]) 
        j += 1
    return merged_list



• Complexity  
O(n log n)


• Making n ten 
times larger


• Makes time 30 
times longer

Merge sort

unsorted_list = [64, 34, 25, 12, 22, 11, 90] 
print(merge_sort(unsorted_list))

for n in [1000, 10000, 100000, 1000000, 10000000]:
  haystack = []
  for i in range(n):
    haystack.append(random.random())
  start = time.time()
  merge_sort(haystack)
  end = time.time()
  elapsed = end - start
  print(f'{elapsed:9.4f}',  f'{n:,}')



• Break the problem into a series of  
sub-problems


• If the same sub-problem is being solved 
many times, avoid that:

• Save the results of the sub-problems 

and only calculate each one only once

• This is an example of time-memory 

trade-of

• Use more memory to save time

Dynamic programming



Fibonacci series by recursion

def fib(n): 
     global count1
     if n == 1:
         count1 += 1
     if n <= 1:   
        return 1   
     else:  
        return fib(n-1) + fib(n-2)  
for i in range(5):
    count1 = 0
    print(fib(i), count1)

• fib(1) is calculated 
many times





Dynamic programming



Dynamic programming of Fibonacci numbers

def dyna_fib(n):
    if n == 0:
        return 0
    if n == 1:
        return 1  
    if lookup[n] is not None:
        return lookup[n]
  
    lookup[n] = dyna_fib(n-1) + dyna_fib(n-2)
    return lookup[n]
lookup = [None]*(1000)
 
for i in range(6): 
    print(dyna_fib(i))

• Each fib(n) is 
calculated only 
once



Ackerman's Function using recursion



Ackerman's Function

def ackermann(m, n):
    global count11
    if m == 0:
        return n + 1
    elif n == 0:
        return ackermann(m - 1, 1)
    else:
        if (m == 1) and (n == 1):
            count11 += 1
        return ackermann(m - 1, ackermann(m, n - 1))

for i in range(4):
  count11 = 0
  a =ackermann(i,  i)
  print("a(", i, ",", i, ") ", "Calculated a(1,1)", count11, "times")



• Still fails

• See next slide

Ackerman's Function with dynamic programming





• Consider an optimization problem with 
many steps

• Such as the traveling salesman problem


• Greedy algorithm: choose the lowest cost 
option at each step

• Travel always to the nearest remaining 

city

Greedy algorithms



Greedy algorithm



Greedy algorithm



• You have bills in these denominations:

• $1, $2, $5, $10, $20, $50


• You want to pay $29

• Greedy algorithm: pay with largest bill at 

each step

• $20 + $5 + $2 + $2

• Greedy algorithm finds best solution

• Fewest number of bills

Making Change



• You have bills in these denominations:

• $1, $14, $25


• You want to pay $29

• Greedy algorithm: pay with largest bill at 

each step

• $25 + $1 + $1 + $1 + $1


• Not the best solution

• $14 + $14 + $1

Making Change



Shortest path problem

• Possible 
paths from 
A to D

• AD: 9

• ABCD: 10

• AEFD: 7


• Shortest is 
AEFD



Representation of graph

graph = dict() 
graph['A'] = {'B': 5, 'D': 9, 'E': 2} 
graph['B'] = {'A': 5, 'C': 2} 
graph['C'] = {'B': 2, 'D': 3} 
graph['D'] = {'A': 9, 'F': 2, 'C': 3} 
graph['E'] = {'A': 2, 'F': 3} 
graph['F'] = {'E': 3, 'D': 2}

• Nested 
dictionaries


• Contains 
adjacent 
nodes and 
distances



• Initial table

Table of shortest distances



After visiting node A



After visiting node E



After visiting node B



After visiting node F



After visiting node C



After visiting node D
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