3 Algorithm Design Techniques and Strategies

For COMSC 132

Topics

- Brute force
- Recursion
- Divide and conquer
- Dynamic programming
- Greedy algorithms
- Dijkstra's shortest path algorithm

Brute force

- Solving a problem by trying all possibilities
- Can be VERY slow
- Consider a chess game
- Trying to explore all possible moves several moves ahead becomes a huge problem quickly

Brute force

- Trying to decrypt data without knowing the key
- Simply try all possible keys
- Slow but effective if you have enough time

Brute force search

- Haystack is not sorted
- Must search through list one item at a time
- ComplexityO(n)

```
import time, random
    for n in [100000, 1000000, 10000000]:
      haystack = []
      for i in range(n):
        haystack.append(random.random())
      needles = []
      for rep in range(10):
        needles.append(haystack[random.randint(0, n-1)])
      start = time.time()
      for rep in range(10):
        for i in range(n):
          if needles[rep] == haystack[i]:
            break
      end = time.time()
      elapsed = end - start
      print("Time: ", f'{elapsed:9.4f}', f'{n:,}')
→ Time:
              0.0743 100,000
    Time:
              0.7502 1,000,000
    Time:
              9.3014 10,000,000
```

Brute force search

```
import time, random
for n in [100000, 1000000, 10000000]:
 haystack = []
 for i in range(n):
   haystack.append(random.random())
 needles = []
 for rep in range(10):
   needles.append(haystack[random.randint(0, n-1)])
 start = time.time()
 for rep in range(10):
   for i in range(n):
     if needles[rep] == haystack[i]:
       break
 end = time.time()
 elapsed = end - start
 print("Time: ", f'{elapsed:9.4f}', f'{n:,}')
```

Recursion

- Algorithm calls itself repeatedly
- Until a condition is fulfilled

Factorial by Recursion

```
def factorial(n):
    # test for a base case
    if n == 0:
        return 1
    else:
        # make a calculation and a recursive call
        return n*factorial(n-1)
    print(factorial(4))
```

```
factorial(0)

factorial(1)

factorial(2)

factorial(3)

factorial(4)

24
```

```
def factorial(n):
    # test for a base case
    if n == 0:
        return 1
    else:
    # make a calculation and a recursive call
        return n*factorial(n-1)
print(factorial(4))
```

Ackerman's Function

```
import time
    def ackermann(m, n):
        global depth
        depth += 1
        if m == 0:
            return n + 1
        elif n == 0:
            return ackermann(m - 1, 1)
        else:
             return ackermann(m - 1, ackermann(m, n - 1))
    for i in range(4):
      depth = 0
      start = time.time()
      a =ackermann(i, i)
      end = time.time()
      elapsed = end - start
      print("a(", i, ",", i, ") ", f'{elapsed:9.4f}', depth)
a(0,0) 0.0000 1
a(1,1) 0.0000 4
a(2,2) 0.0000 27
    a(3,3) 0.0009 2432
```

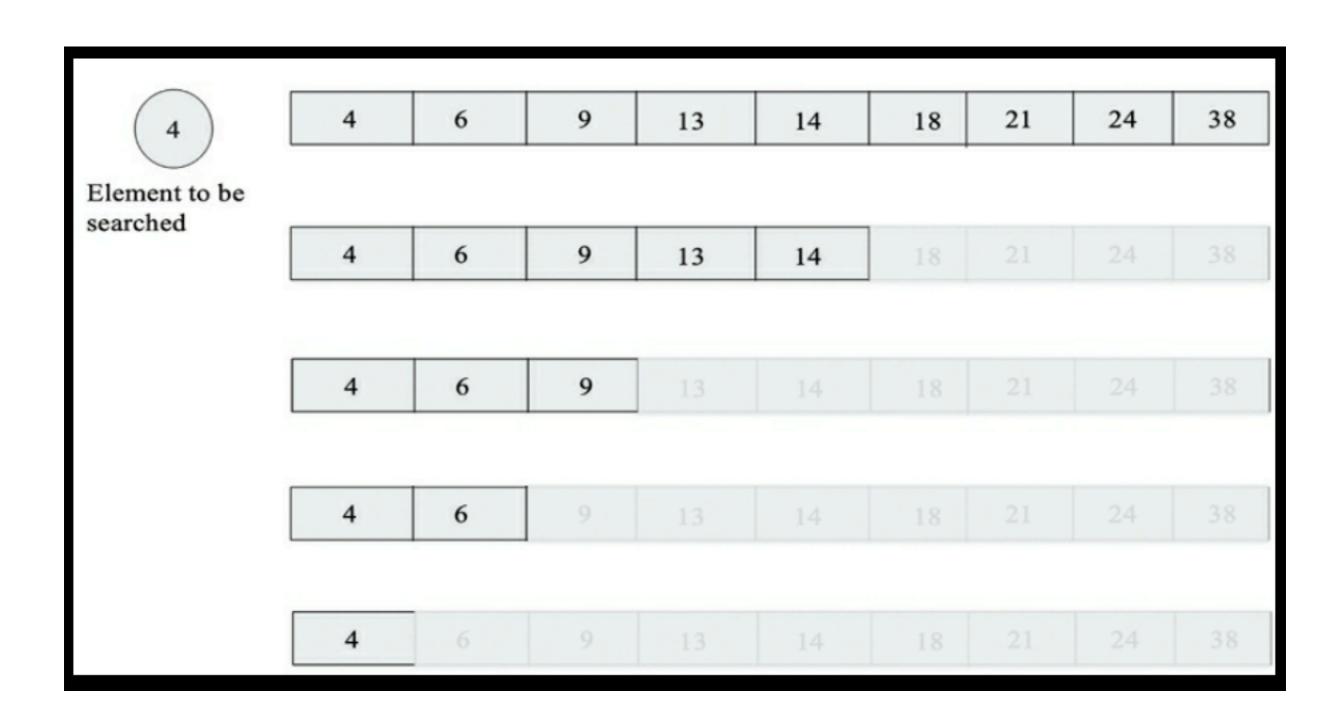
Ackerman's Function

```
import time
def ackermann(m, n):
    global depth
   depth += 1
   if m == 0:
       return n + 1
   elif n == 0:
        return ackermann(m - 1, 1)
    else:
        return ackermann(m - 1, ackermann(m, n - 1))
for i in range(4):
  depth = 0
 start = time.time()
  a =ackermann(i, i)
 end = time.time()
  elapsed = end - start
```

Divide and conquer

- Split a complex problem into two parts
- Solve them separately

Binary search



Binary search

- Haystack "arr" is sorted
- Test one value in the middle of the list
- Needle "key" is either below or above that
- The remaining list is 1/2 the size

```
def binary_search(arr, start, end, key):
    global steps
    while start <= end:
        steps += 1
        mid = start + (end - start)//2
        if arr[mid] == key:
            return mid
        elif arr[mid] < key:</pre>
            start = mid + 1
        else:
            end = mid - 1
    return -1
```

Binary search

- Test various values of n
- Perform each search ten times
- Print out total number of steps required

```
for n in [1000, 10000, 1000000, 10000000]:
   haystack = []
   for i in range(n):
      haystack.append(random.random())
   haystack.sort()

needles = []
   for rep in range(10):
      needles.append(haystack[random.randint(0, n-1)])

steps = 0
   for rep in range(10):
      result = binary_search(haystack, 0, n-1, needles[rep])
   print("Steps: ", steps, f'{n:,}')
```

Binary search

- Time complexity O(log *n*)
- Making list 10 times longer simply adds 30 more steps

```
Steps: 83 1,000
Steps: 124 10,000
Steps: 156 100,000
Steps: 188 1,000,000
Steps: 227 10,000,000
```

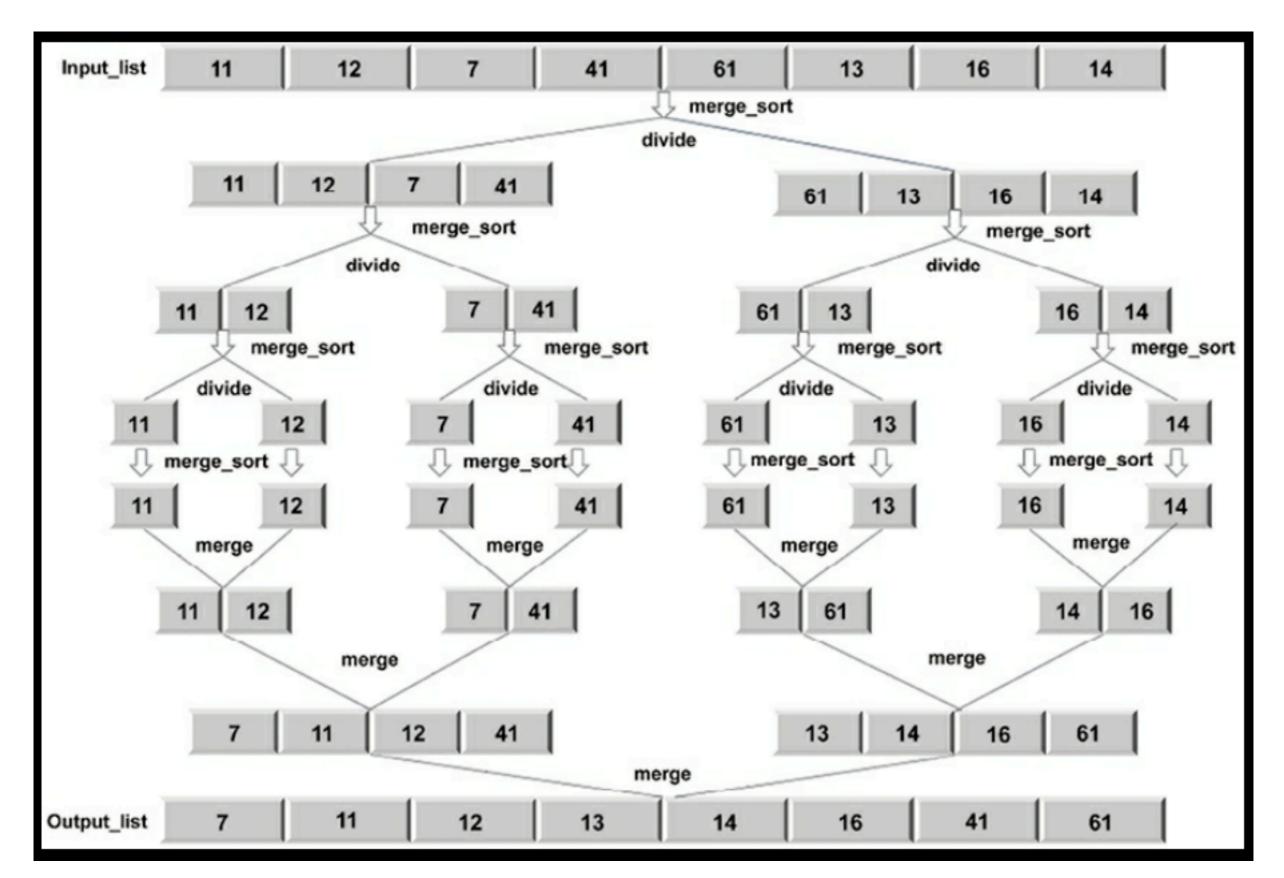
Binary search

```
import random
def binary_search(arr, start, end, key):
   global steps
   while start <= end:
        steps += 1
       mid = start + (end - start)//2
       if arr[mid] == key:
           return mid
        elif arr[mid] < key:</pre>
           start = mid + 1
        else:
            end = mid - 1
    return -1
for n in [1000, 10000, 100000, 1000000, 10000000]:
 haystack = []
 for i in range(n):
   haystack.append(random.random())
 haystack.sort()
 needles = []
 for rep in range(10):
   needles.append(haystack[random.randint(0, n-1)])
 steps = 0
 for rep in range(10):
   result = binary_search(haystack, 0, n-1, needles[rep])
 print("Steps: ", steps, f'{n:,}')
```

Merge sort

- Divide list in half
- Repeat until each sub-list has only one element
- Merge the sublists with elements in order
- Repeat until there's one sorted list

Merge sort



merge_sort

- Splits list in half recursively
 - ComplexityO(log *n*)
- Calls merge() to merge the short sublists together

```
def merge_sort(unsorted_list):
    if len(unsorted_list) == 1:
        return unsorted_list
    mid_point = int(len(unsorted_list)/2)
    first_half = unsorted_list[:mid_point]
    second_half = unsorted_list[mid_point:]
    half_a = merge_sort(first_half)
    half_b = merge_sort(second_half)
    return merge(half_a, half_b)
```

def merge_sort(unsorted_list): if len(unsorted_list) == 1: return unsorted list

return merge(half a, half b)

import random, time

```
mid_point = int(len(unsorted_list)/2)
first_half = unsorted_list[:mid_point]
second_half = unsorted_list[mid_point:]
half_a = merge_sort(first_half)
half b = merge_sort(second half)
```

merge

- Combines two lists into one larger, sorted list
 - ComplexityO(n)

```
def merge(first_sublist, second_sublist):
    i = j = 0
    merged list = []
    while i < len(first_sublist) and j < len(second_sublist):
        if first_sublist[i] < second_sublist[j]:</pre>
            merged_list.append(first_sublist[i])
            i += 1
        else:
            merged_list.append(second_sublist[j])
            i += 1
    while i < len(first_sublist):
        merged_list.append(first_sublist[i])
        i += 1
    while j < len(second_sublist):</pre>
        merged_list.append(second_sublist[j])
        i += 1
    return merged_list
```

```
def merge(first_sublist, second_sublist):
    i = j = 0
    merged_list = []
    while i < len(first_sublist) and j < len(second_sublist):
        if first_sublist[i] < second_sublist[j]:
            merged_list.append(first_sublist[i])
            i += 1
        else:
            merged_list.append(second_sublist[j])
            j += 1
    while i < len(first_sublist):
        merged_list.append(first_sublist[i])
        i += 1
    while j < len(second_sublist):
        merged_list.append(second_sublist[j])
        j += 1
    return_merged_list</pre>
```

Merge sort

- ComplexityO(n log n)
- Making *n* ten times larger
- Makes time 30 times longer

```
unsorted_list = [64, 34, 25, 12, 22, 11, 90]
    print(merge_sort(unsorted_list))
    for n in [1000, 10000, 100000, 10000000, 10000000]:
      haystack = []
      for i in range(n):
        haystack.append(random.random())
      start = time.time()
      merge_sort(haystack)
      end = time.time()
      elapsed = end - start
      print(f'{elapsed:9.4f}', f'{n:,}')
\overline{\Rightarrow} [11, 12, 22, 25, 34, 64, 90]
       0.0049 1,000
       0.0576 10,000
       2.4416 100,000
       7.6330 1,000,000
     106.5946 10,000,000
```

```
unsorted_list = [64, 34, 25, 12, 22, 11, 90]
print(merge_sort(unsorted_list))

for n in [1000, 10000, 100000, 1000000, 100000000]:
    haystack = []
    for i in range(n):
        haystack.append(random.random())
    start = time.time()
    merge_sort(haystack)
    end = time.time()
    elapsed = end - start
    print(f'{elapsed:9.4f}', f'{n:,}')
```

Dynamic programming

- Break the problem into a series of sub-problems
- If the same sub-problem is being solved many times, avoid that:
 - Save the results of the sub-problems and only calculate each one only once
- This is an example of time-memory trade-off
 - Use more memory to save time

Fibonacci series by recursion

 fib(1) is calculated many times

```
def fib(n):
    global count1
    if n == 1:
        count1 += 1
    if n <= 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)

for i in range(5):
    count1 = 0
    print(fib(i), count1)</pre>
```

```
[4] def fib(n):
         global count1
         if n == 1:
             count1 += 1
         if n <= 1:
            return 1
         else:
            return fib(n-1) + fib(n-2)
    for i in range(5):
        count1 = 0
        print(fib(i), count1)
```

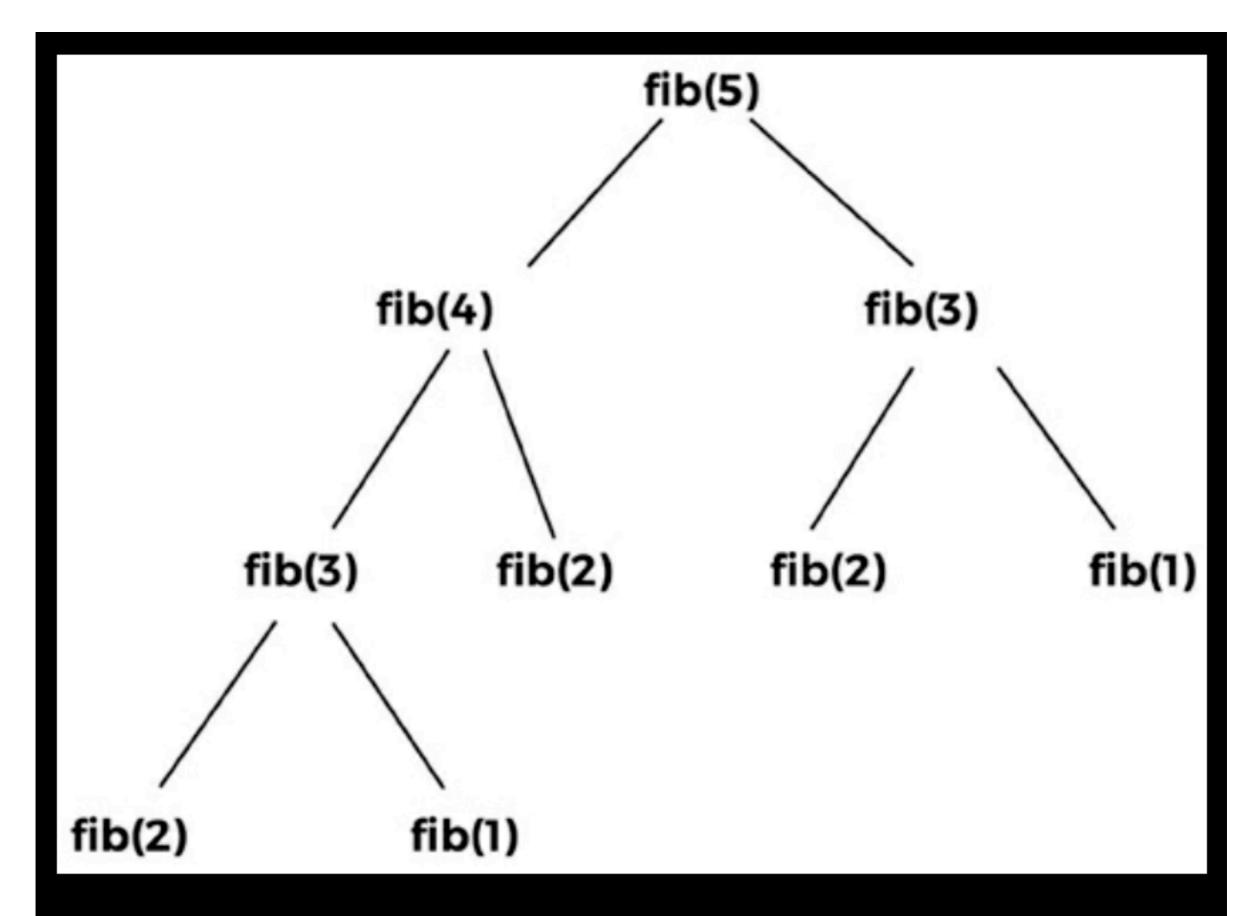
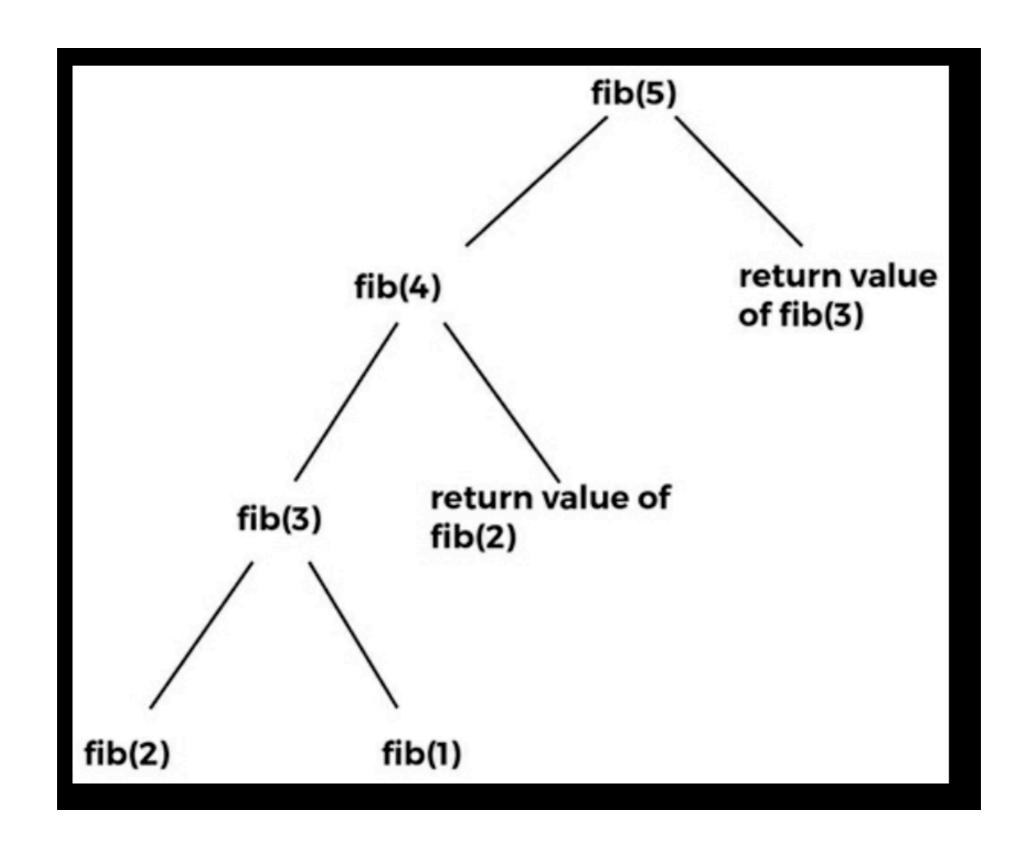


Figure 3.5: Recursion tree for fib(5)

Dynamic programming



Dynamic programming of Fibonacci numbers

 Each fib(n) is calculated only once

```
def dyna_fib(n):
    if n == 0:
        return 0
    if n == 1:
        return 1
    if lookup[n] is not None:
        return lookup[n]

    lookup[n] = dyna_fib(n-1) + dyna_fib(n-2)
    return lookup[n]

lookup = [None]*(1000)

for i in range(6):
    print(dyna_fib(i))
```

```
[5] def dyna_fib(n):
        if n == 0:
            return 0
        if n == 1:
            return 1
        if lookup[n] is not None:
            return lookup[n]
        lookup[n] = dyna_fib(n-1) + dyna_fib(n-2)
        return lookup[n]
    lookup = [None]*(1000)
    for i in range(6):
        print(dyna_fib(i))
₹
```

Ackerman's Function using recursion

```
def ackermann(m, n):
        global count11
        if m == 0:
            return n + 1
        elif n == 0:
            return ackermann(m - 1, 1)
        else:
            if (m == 1) and (n == 1):
                count11 += 1
            return ackermann(m - 1, ackermann(m, n - 1))
    for i in range(4):
      count11 = 0
      a =ackermann(i, i)
      print("a(", i, ",", i, ") ", "Calculated a(1,1)", count11, "times")
\Rightarrow a(0,0) Calculated a(1,1) 0 times
    a(1,1) Calculated a(1,1) 1 times
    a(2,2) Calculated a(1,1) 3 times
    a(3,3) Calculated a(1,1) 52 times
```

Ackerman's Function

Ackerman's Function with dynamic programming

- Still fails
- See next slide

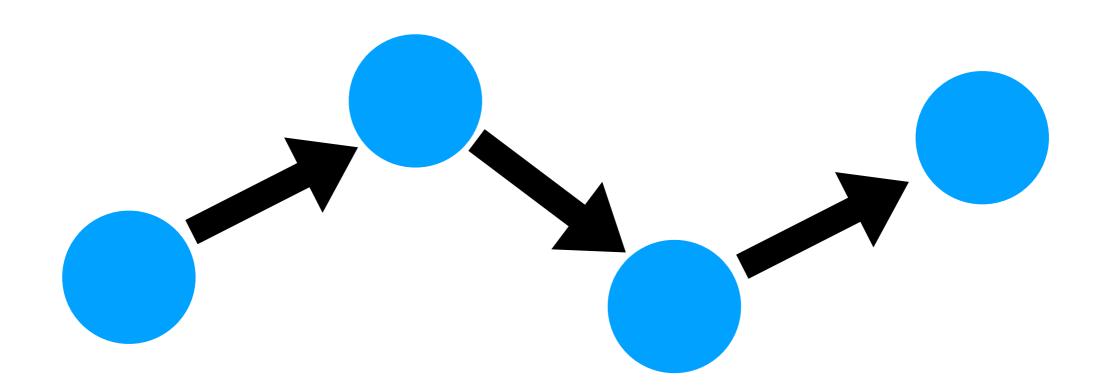
```
def dynamic_ackermann(m, n):
    global lookup, depth
    depth += 1
    if lookup[m][n] is not None:
        return lookup[m][n]
    if m == 0:
        result = n + 1
    elif n == 0:
        if lookup[m-1][n] is not None:
            result = lookup[m-1][n]
        else:
            result = ackermann(m - 1, 1)
    else:
        if lookup[m][n-1] is not None:
            term2 = lookup[m][n-1]
        else:
            term2 = ackermann(m, n - 1)
        if lookup[m-1][term2] is not None:
            result = lookup[m-1][term2]
        else:
            result = ackermann(m - 1, term2)
    lookup[m][n] = result
    return result
```

```
# Define 2D list
    lookup = [[None] *100] *100
    for i in range(6):
      depth = 0
     a =dynamic_ackermann(i, i)
     print("a(", i, ",", i, "):", a, "depth:", depth)
5 + a(0,0): 1 depth: 1
    a(1,1): 2 depth: 1
    a(2,2): 4 depth: 1
    a(3,3): 11 depth: 1
                                            Traceback (most recent call last)
    RecursionError
    <ipython-input-11-65399764d326> in <cell line: 29>()
        29 for i in range(6):
        30 	ext{ depth} = 0
    ---> 31 a =dynamic_ackermann(i, i)
         32 print("a(", i, ",", i, "):", a, "depth:", depth)
                                 👲 2 frames
    ... last 1 frames repeated, from the frame below ...
    <ipython-input-2-3c31c9656599> in ackermann(m, n)
             if (m == 1) and (n == 1):
                       count11 += 1
               return ackermann(m - 1, ackermann(m, n - 1))
    ---> 10
        11
        12 for i in range(4):
    RecursionError: maximum recursion depth exceeded in comparison
```

Greedy algorithms

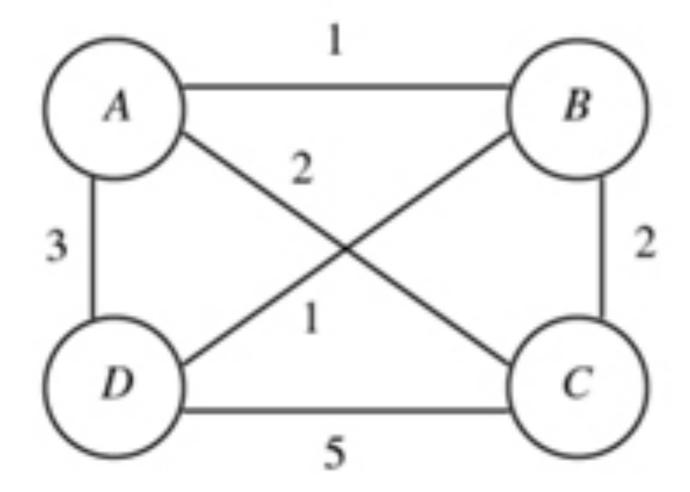
- Consider an optimization problem with many steps
 - Such as the traveling salesman problem
- Greedy algorithm: choose the lowest cost option at each step
 - Travel always to the nearest remaining city

Greedy algorithm



Greedy algorithm

Here is a little example from S.K.Basu's book, Design Methods and Analysis of Algorithms:



From A, the greedy cycle is ABDCA of length 9, while ACBDA has length 8.

Making Change

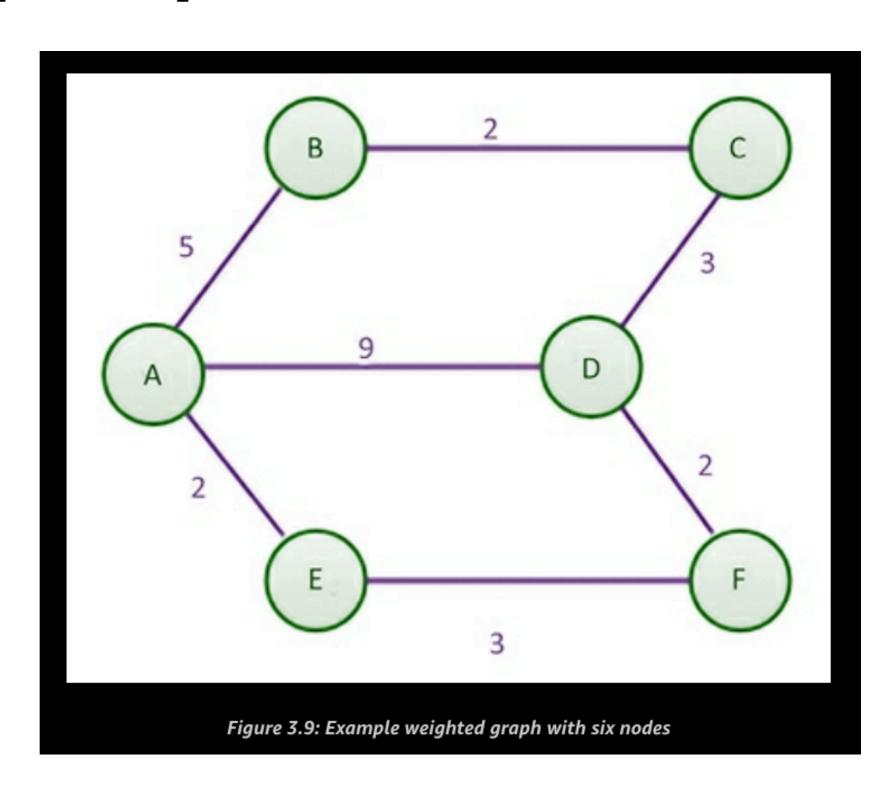
- You have bills in these denominations:
 - \$1, \$2, \$5, \$10, \$20, \$50
- You want to pay \$29
- Greedy algorithm: pay with largest bill at each step
 - \$20 + \$5 + \$2 + \$2
 - Greedy algorithm finds best solution
 - Fewest number of bills

Making Change

- You have bills in these denominations:
 - \$1, \$14, \$25
- You want to pay \$29
- Greedy algorithm: pay with largest bill at each step
 - -\$25 + \$1 + \$1 + \$1 + \$1
- Not the best solution
 - \$14 + \$14 + \$1

Shortest path problem

- Possible paths from A to D
 - AD: 9
 - ABCD: 10
 - AEFD: 7
- Shortest is AEFD



Representation of graph

- Nested dictionaries
- Contains adjacent nodes and distances

```
[15] graph = dict()
    graph['A'] = {'B': 5, 'D': 9, 'E': 2}
    graph['B'] = {'A': 5, 'C': 2}
    graph['C'] = {'B': 2, 'D': 3}
    graph['D'] = {'A': 9, 'F': 2, 'C': 3}
    graph['E'] = {'A': 2, 'F': 3}
    graph['F'] = {'E': 3, 'D': 2}
```

```
graph = dict()
graph['A'] = {'B': 5, 'D': 9, 'E': 2}
graph['B'] = {'A': 5, 'C': 2}
graph['C'] = {'B': 2, 'D': 3}
graph['D'] = {'A': 9, 'F': 2, 'C': 3}
graph['E'] = {'A': 2, 'F': 3}
graph['F'] = {'E': 3, 'D': 2}
```

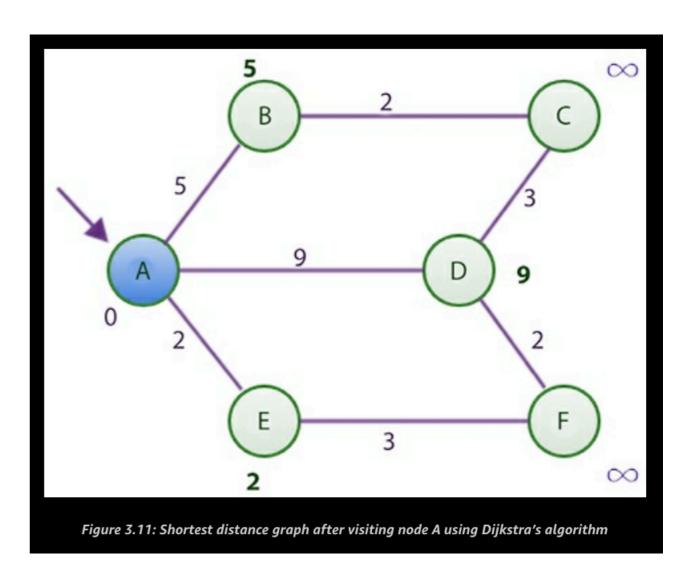
Table of shortest distances

Initial table

Node	Shortest distance from source	Previous node
A	0	None
В	∞	None
c	∞	None
D	∞	None
E	<u>∞</u>	None
F	<u>∞</u>	None

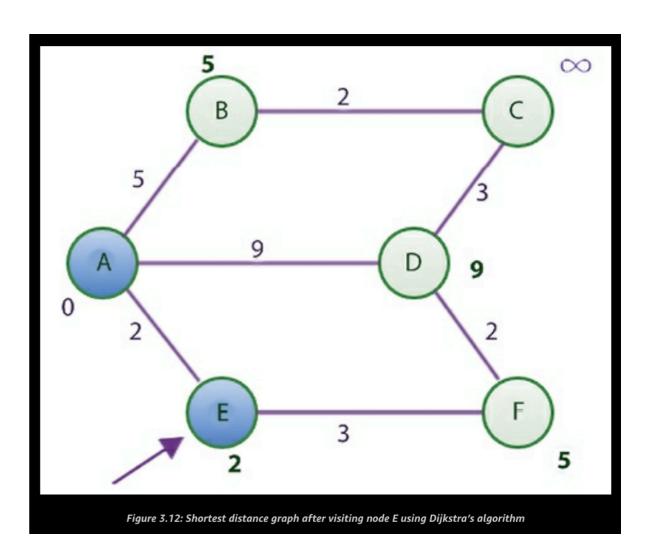
After visiting node A

Node	Shortest distance from source	Previous node
A *	0	None
В	5	A
c	∞	None
D	9	A
E	2	A
F	∞	None



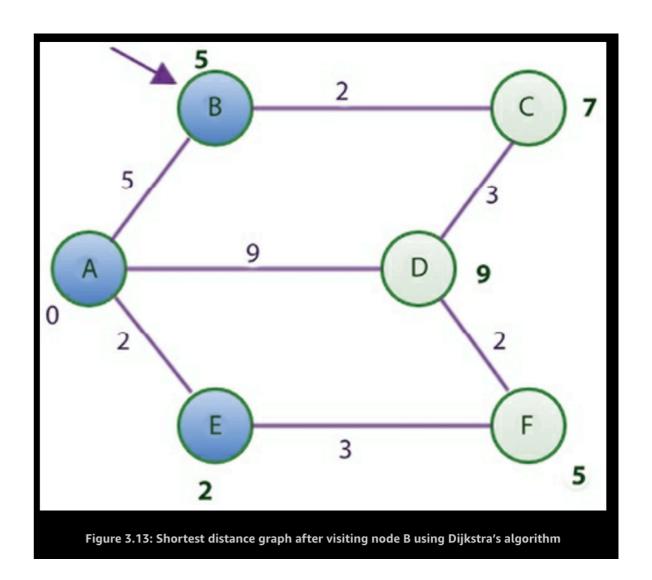
After visiting node E

Node	Shortest distance from source	Previous node
A *	0	None
В	5	A
С	© C	None
D	9	А
E*	2	A
F	5	E



After visiting node B

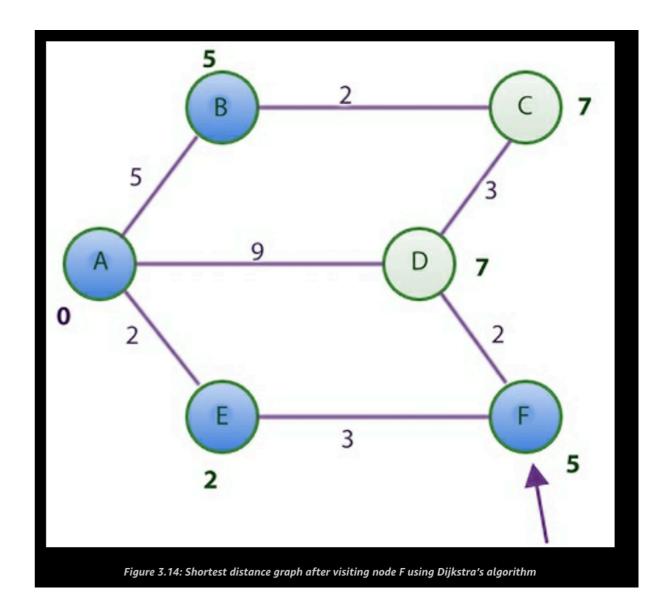
Node	Shortest distance from source	Previous node
A*	0	None
B*	5	A
С	7	В
D	9	A
E*	2	Α
F	5	E



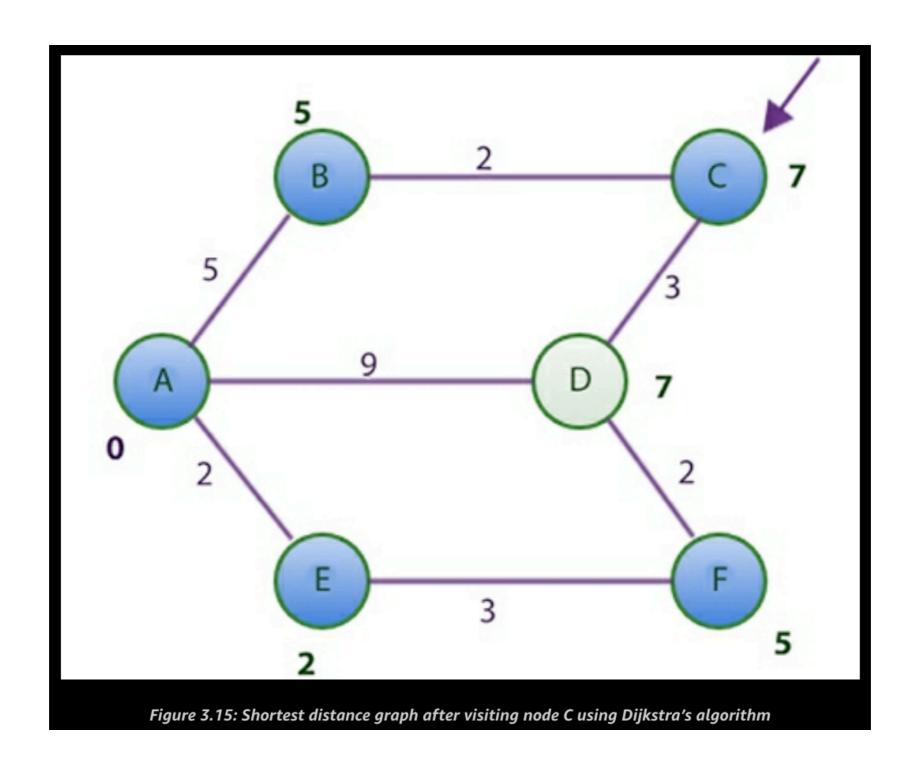
After visiting node F

Node	Shortest distance from source	Previous node
A*	0	None
B*	5	A
С	7	В
D	7	F
E*	2	A
F*	5	E

Table 3.6: Shortest distance table after visiting node F



After visiting node C



After visiting node D

Node	Shortest distance from source	Previous node
A*	0	None
B*	5	A
C*	7	В
D*	7	F
E*	2	A
F*	5	Е

