
Sam Bowne Sep 16, 2024

3 Algorithm Design
Techniques and
Strategies
For COMSC 132

•Brute force

•Recursion

•Divide and conquer

•Dynamic programming

•Greedy algorithms

•Dijkstra’s shortest path algorithm

Topics

• Solving a problem by trying all possibilities

• Can be VERY slow

• Consider a chess game

• Trying to explore all possible moves several

moves ahead becomes a huge problem
quickly

Brute force

• Trying to decrypt data without knowing the
key

• Simply try all possible keys

• Slow but effective if you have enough time

Brute force

Brute force search

• Haystack is
not sorted

• Must
search
through list
one item at
a time

• Complexity 
O(n)

Brute force search

import time, random

for n in [100000, 1000000, 10000000]:
 haystack = []
 for i in range(n):
 haystack.append(random.random())
 needles = []
 for rep in range(10):
 needles.append(haystack[random.randint(0, n-1)])

 start = time.time()
 for rep in range(10):
 for i in range(n):
 if needles[rep] == haystack[i]:
 break
 end = time.time()
 elapsed = end - start
 print("Time: ", f'{elapsed:9.4f}', f'{n:,}')

• Algorithm calls itself repeatedly

• Until a condition is fulfilled

Recursion

Factorial by Recursion

def factorial(n):
 # test for a base case
 if n == 0:
 return 1
 else:
 # make a calculation and a recursive call
 return n*factorial(n-1)
print(factorial(4))

Ackerman's Function

Ackerman's Function

import time

def ackermann(m, n):
 global depth
 depth += 1
 if m == 0:
 return n + 1
 elif n == 0:
 return ackermann(m - 1, 1)
 else:
 return ackermann(m - 1, ackermann(m, n - 1))

for i in range(4):
 depth = 0
 start = time.time()
 a =ackermann(i, i)
 end = time.time()
 elapsed = end - start
 print("a(", i, ",", i, ") ", f'{elapsed:9.4f}', depth)

• Split a complex problem into two parts

• Solve them separately

Divide and conquer

Binary search

Binary
search
• Haystack

"arr" is sorted

• Test one

value in the
middle of the
list

• Needle "key"
is either
below or
above that

• The
remaining list
is 1/2 the size

Binary
search
• Test various values of n

• Perform each search ten times

• Print out total number of steps required

Binary
search
• Time

complexity 
O(log n)

• Making list
10 times
longer
simply
adds 30
more steps

Binary search
import random

def binary_search(arr, start, end, key):
 global steps
 while start <= end:
 steps += 1
 mid = start + (end - start)//2
 if arr[mid] == key:
 return mid
 elif arr[mid] < key:
 start = mid + 1
 else:
 end = mid - 1
 return -1

for n in [1000, 10000, 100000, 1000000, 10000000]:
 haystack = []
 for i in range(n):
 haystack.append(random.random())
 haystack.sort()

 needles = []
 for rep in range(10):
 needles.append(haystack[random.randint(0, n-1)])

 steps = 0
 for rep in range(10):
 result = binary_search(haystack, 0, n-1, needles[rep])
 print("Steps: ", steps, f'{n:,}')

• Divide list in half

• Repeat until each sub-list has only one

element

• Merge the sublists with elements in order

• Repeat until there's one sorted list

Merge sort

Merge sort

• Splits list in half
recursively

• Complexity  

O(log n)

• Calls merge() to

merge the short
sublists together

merge_sort

import random, time

def merge_sort(unsorted_list):
 if len(unsorted_list) == 1:
 return unsorted_list
 mid_point = int(len(unsorted_list)/2)
 first_half = unsorted_list[:mid_point]
 second_half = unsorted_list[mid_point:]
 half_a = merge_sort(first_half)
 half_b = merge_sort(second_half)
 return merge(half_a, half_b)

• Combines two
lists into one
larger, sorted list

• Complexity  

O(n)

merge

def merge(first_sublist, second_sublist):
 i = j = 0
 merged_list = []
 while i < len(first_sublist) and j < len(second_sublist):
 if first_sublist[i] < second_sublist[j]:
 merged_list.append(first_sublist[i])
 i += 1
 else:
 merged_list.append(second_sublist[j])
 j += 1
 while i < len(first_sublist):
 merged_list.append(first_sublist[i])
 i += 1
 while j < len(second_sublist):
 merged_list.append(second_sublist[j])
 j += 1
 return merged_list

• Complexity  
O(n log n)

• Making n ten
times larger

• Makes time 30
times longer

Merge sort

unsorted_list = [64, 34, 25, 12, 22, 11, 90]
print(merge_sort(unsorted_list))

for n in [1000, 10000, 100000, 1000000, 10000000]:
 haystack = []
 for i in range(n):
 haystack.append(random.random())
 start = time.time()
 merge_sort(haystack)
 end = time.time()
 elapsed = end - start
 print(f'{elapsed:9.4f}', f'{n:,}')

• Break the problem into a series of  
sub-problems

• If the same sub-problem is being solved
many times, avoid that:

• Save the results of the sub-problems

and only calculate each one only once

• This is an example of time-memory

trade-of

• Use more memory to save time

Dynamic programming

Fibonacci series by recursion

def fib(n):
 global count1
 if n == 1:
 count1 += 1
 if n <= 1:
 return 1
 else:
 return fib(n-1) + fib(n-2)
for i in range(5):
 count1 = 0
 print(fib(i), count1)

• fib(1) is calculated
many times

Dynamic programming

Dynamic programming of Fibonacci numbers

def dyna_fib(n):
 if n == 0:
 return 0
 if n == 1:
 return 1
 if lookup[n] is not None:
 return lookup[n]

 lookup[n] = dyna_fib(n-1) + dyna_fib(n-2)
 return lookup[n]
lookup = [None]*(1000)

for i in range(6):
 print(dyna_fib(i))

• Each fib(n) is
calculated only
once

Ackerman's Function using recursion

Ackerman's Function

def ackermann(m, n):
 global count11
 if m == 0:
 return n + 1
 elif n == 0:
 return ackermann(m - 1, 1)
 else:
 if (m == 1) and (n == 1):
 count11 += 1
 return ackermann(m - 1, ackermann(m, n - 1))

for i in range(4):
 count11 = 0
 a =ackermann(i, i)
 print("a(", i, ",", i, ") ", "Calculated a(1,1)", count11, "times")

• Still fails

• See next slide

Ackerman's Function with dynamic programming

• Consider an optimization problem with
many steps

• Such as the traveling salesman problem

• Greedy algorithm: choose the lowest cost
option at each step

• Travel always to the nearest remaining

city

Greedy algorithms

Greedy algorithm

Greedy algorithm

• You have bills in these denominations:

• $1, $2, $5, $10, $20, $50

• You want to pay $29

• Greedy algorithm: pay with largest bill at

each step

• $20 + $5 + $2 + $2

• Greedy algorithm finds best solution

• Fewest number of bills

Making Change

• You have bills in these denominations:

• $1, $14, $25

• You want to pay $29

• Greedy algorithm: pay with largest bill at

each step

• $25 + $1 + $1 + $1 + $1

• Not the best solution

• $14 + $14 + $1

Making Change

Shortest path problem

• Possible
paths from
A to D

• AD: 9

• ABCD: 10

• AEFD: 7

• Shortest is
AEFD

Representation of graph

graph = dict()
graph['A'] = {'B': 5, 'D': 9, 'E': 2}
graph['B'] = {'A': 5, 'C': 2}
graph['C'] = {'B': 2, 'D': 3}
graph['D'] = {'A': 9, 'F': 2, 'C': 3}
graph['E'] = {'A': 2, 'F': 3}
graph['F'] = {'E': 3, 'D': 2}

• Nested
dictionaries

• Contains
adjacent
nodes and
distances

• Initial table

Table of shortest distances

After visiting node A

After visiting node E

After visiting node B

After visiting node F

After visiting node C

After visiting node D

Ch 3

