
Sam Bowne Sep 12, 2024

4 Linked Lists
For COMSC 132

• Arrays

• Introducing linked lists

•Doubly linked lists

•Circular lists

• Practical applications of linked lists

Topics

Arrays

• A collection of data items of the same type

• Stored in contiguous memory locations

• Position of an element is base address plus

offset

• Static size declared at time of creation

Array

• A collection of data items of the same type

• Stored sequentially

• Connected through pointers

• Stored in different memory locations

Linked lists

• Very fast to store, traverse, or access data

• O(1)

• Allows random access

• Slow for insert or delete operations — O(n)

• Poor performance if the array is too large to

store in memory

Array speed

• Insert and delete are fast — O(1)

• Slow to store, traverse, or access data

• O(n)

• Length of the list can increase or decrease during
program execution

Linked list speed

Introducing linked lists

• Each data item is called a node

• Each node stores data and a pointer
• The last node points to None

Linked Lists

• The nodes may contain pointers as data

Nodes and pointers

• Last node points to None
• Indicating the end of the list

Three nodes

Implementation of a node

Singly linked list

Creating and traversing a list

class Node:
 def __init__ (self, data=None):
 self.data = data
 self.next = None

n1 = Node('eggs')
n2 = Node('ham')
n3 = Node('spam')

n1.next = n2
n2.next = n3

traverse list
current = n1
while current:
 print(current.data)
 current = current.next

• Encapsulates the
Node object

• End-user does not

use it directly

• Generator method

uses yield instead of
return

• append traverses the
whole list to find the
end

Improved list  
creation and  
traversal

Code
def iter(self):
 current = self.head
 while current:
 val = current.data
 current = current.next
 yield val

class SinglyLinkedList:
 def __init__ (self):
 self.head = None
 self.size = 0
 def append(self, data):
 # Encapsulate the data in a Node
 node = Node(data)
 if self.head is None:
 self.head = node
 else:
 current = self.head
 while current.next:
 current = current.next
 current.next = node

words = SinglyLinkedList()
words.append('egg')
words.append('ham')
words.append('spam')

current = words.head
while current:
 print(current.data)
 current = current.next

• Append is more
efficient

List with head
and tail
pointers

• Must update two links

• Complexity is O(n) if there is no link to the tail,

but O(1) if there is, because the new node goes
at the tail

Inserting a node

Inserting a node

Querying a list

Code

class SinglyLinkedList:
 def __init__ (self):
 self.tail = None
 self.head = None
 self.size = 0
 def iter(self):
 current = self.head
 while current:
 val = current.data
 current = current.next
 yield val
 def append(self, data):
 node = Node(data)
 if self.tail:
 self.tail.next = node
 self.tail = node
 else:
 self.head = node
 self.tail = node

Code

 def append_at_a_location(self, data, index):
 current = self.head
 prev = self.head
 node = Node(data)
 count = 1
 while current:
 if count == 1:
 node.next = current
 self.head = node
 print(count)
 return
 elif index == index:
 node.next = current
 prev.next = node
 return
 count += 1
 prev = current
 current = current.next
 if count < index:
 print("Error: indexed location is larger than the length of the list")
 def search(self, data):
 for node in self.iter():
 if data == node:
 return True
 return False

Code

words = SinglyLinkedList()
words.append('egg')
words.append('ham')
words.append('spam')

print(words.search('sspam'))
print(words.search('spam'))

current = words.head
while current:
 print(current.data)
 current = current.next

• One way: traverse
the list

• O(n)

• Or add a size
attribute to the
SinglyLinkedList
class

• O(1)

Getting the size of a list

Deleting first node

Deleting last node

Deleting last node

Deleting intermediate node

Deleting intermediate node

• Simply assign None to the tail and head
pointers

Clearing a list

Doubly linked lists

Doubly linked list with a single node

Doubly linked list with two nodes

Inserting a node at the beginning

• Firstly, the next pointer of a new node should point to
the head node of the existing list

• The prev pointer of the head node of the existing list
should point to the new node

• Finally, mark the new node as the head node in the list

Inserting a node at the end

• Make the prev pointer of the new node point to the previous tail node

• Make the previous tail node point to the new node

• Finally, update the tail pointer so that the tail pointer now points to the

new node

Inserting a node in the middle

Deleting a node in the middle

Circular lists

Circular list, singly-linked

Circular list, doubly-linked

Practical applications of linked lists

• Singly linked list

• Represent a sparse matrix or a polynomial

• Dynamically allocated memory (heap)

• Doubly linked list

• Thread scheduler to maintain list of

processes running

• Most Recently Used (MRU) and Least

Recently Used (LRU) caches in the OS

• Undo and Redo functionality

Applications

• Circular linked list

• Round-robin scheduling

• Implement Undo or Redo in Word, or Back

in a browser

• Fibonacci heap

• Multiplayer games swap between players

in a loop

Applications

Ch 4

