4 Linked Lists

For COMSC 132

Sam Bowne Sep 12, 2024

Topics

e Arrays

* Introducing linked lists

* Doubly linked lists

e Circular lists

* Practical applications of linked lists

Arrays

Array

* A collection of data items of the same type
» Stored in contiguous memory locations

* Position of an element is base address plus
offset

e Static size declared at time of creation

3 11 7 1 4 2 I

Indexes—» () | 2 3 4 5 6

Figure 4.1: Representation of a one-dimensional array

Linked lists

* A collection of data items of the same type
e Stored sequentially

* Connected through pointers

» Stored in different memory locations

“eggs” “ham™ “spam”
A
! 1
Data Data Data
Next » Next - Next »None

Figure 4.4: A sample linked list of three nodes

Array speed

* Very fast to store, traverse, or access data
* O(7)

* Allows random access

* Slow for insert or delete operations — O(n)

* Poor performance if the array Is too large to
store in memory

3 11 7 1 4 2 I

Indexes—» () | 2 3 4 5 6

Figure 4.1: Representation of a one-dimensional array

Linked list speed

* Insert and delete are fast — O(7)
e Slow to store, traverse, or access data
e« O(n)

* Length of the list can increase or decrease during
program execution

“eggs” “ham™ “spam”
A
f t
Data Data Data
Next - Next > Next »None

Figure 4.4: A sample linked list of three nodes

Introducing linked lists

Linked Lists

 Each data item is called a node
 Each node stores data and a pointer
* The last node points to None

A B

Data Data

Next H > | Next H— None

Figure 4.2: A linked list with two nodes

Nodes and pointers

* The nodes may contain pointers as data

Three nodes

* Last node points to None
* Indicating the end of the list

*ham”

t

“spam”

*

= None

Implementation of a node

class Node:
def __init__ (self, data=None):

self.data data
self.next None

Singly linked list

“spam”

1

Creating and traversing a list

o [22] class Node:
def __init__ (self, data=None):
self.data = data
self.next = None

L Node(‘eggs"')
1n1t (self, data= Node(: haml)
self.data

self.next Node('spam')

.hext = n2

Node('ham') . hext n3

Node('spam')

current = nl
while current:
print(current.data)
hile current: current = current.next

print (current.data)
current = current.next

Improved list
creation and
traversal

 Encapsulates the
Node object

e End-user does not
use it directly

 Generator method
uses vield instead of
return

e append traverses the
whole list to find the
end

>

def iter(self):
current = self.head
while current:
val = current.data
current = current.next
yield val

lass SinglylLinkedList:
def __init__ (self):

self.head = None
self.size = 0
def append(self, data):

node = Node(data)

if self.head is None:
self.head = node

else:
current = self.head
while current.next:

current = current.next

current.next = node

words = SinglyLinkedList()
words.append(‘egg"’)
words.append('ham")
words.append('spam')

current = words.head

while current:
print(current.data)
current = current.next

€gg
ham

spam

Code

iter(self):

current = self.head

while current:
val = current.data
current = current.next
yield val

SinglyLinkedList:
__init (self):
self.head =
self.size =
append(self, data):

node = Node(data)
if self.head is
self.head = node

current = self.head

while current.next:
current = current.next

current.next = node

= SinglyLinkedList()
-append('egg’)
.append('ham')
.append('spam')

hile current:
print(current.data)
current = current.next

List with head
and tail _

= class SinglyLinkedList:
pOInterS def _ init__ (self):

self.tail None
self.head None

° Append |S more self.size = 0

iter(self):

EBffi()iEBf]t current = self.head

while current:

val = current.data

current = current.next
yield val

append(self, data):

node = Node(data)

if self.tail:
self.tail.next = node
self.tail = node

else:
self.head node
self.tail node

Inserting a node

* Must update two links

 Complexity is O(n) if there is no link to the tall,
but O(7) if there is, because the new node goes
at the tall

Inserting a node

append_at_a_location(self, data, index):
current = self.head
prev = self.head
node = Node(data)
count = 1
while current:
if count ==
node.next = current
self.head = node
print(count)
return
elif index == index:
node.next = current
prev.next = node
return
count += 1
prev = current
current = current.next
if count < index:
print("Error: indexed location is larger than the length of the listl')

Querying a list

search(self, data):
for node in self.iter():
if data == node:
return lrue

return |

words = SinglyLinkedList()
words.append('egg’)
words.append('ham")
words.append(‘'spam')

print(words.search('sspam’))
print(words.search('spam'))

current = words.head
while current:

print(current.data)
current = current.next

False
True
€4ag
ham
spam

Code

SinglyLinkedList:

__init (self):

self.tail =

self.head =

self.size =

iter(self):

current = self.head

while current:
val = current.data
current = current.next
yield val

append(self, data):

node = Node(data)

if self.tail:
self.tail. node
self.tail

self.head =
self.tail

Code

append at a location(self, data, index):
current = self.head
prev = self.head
node = Node(data)
count =
while current:
if coun
node.next =
self.head =
print (count)
return
elif index ==
node.next =
prev.next
return
count += 1
prev = current
current = current.next
if count < index:
print("Error: indexed location is larger than the length of the list")
search(self, data):
for node in self.iter():
if data == node:
return

return

Code

= SinglyLinkedList ()
.append('egg')

.append('ham')
.append('spam')

print (words.search('sspam'))
print (words.search('spam'))

current = words.head
hile current:

print(current.data)
current = current.next

Getting the size of a list

* One way: traverse R
the I|St current = self.head

while current:

® O(n) count += 1

current = current.next
return count

* Or add d Size class SinglyLinkedList:
attrlbute to the def __init_ (self):
S|ng|yL|nkedL|St self.size = 0
class

* O(7)

Deleting first node

Current

Deleting last node

d A

Prev Cur-ent head

Data Data Data

Next Next Next

i

head

Deleting last node

current

Deleting intermediate node

Prev Current head

> None

... current

Deleting intermediate node

Clearing a list

* Simply assign None to the tail and head
pointers

Doubly linked lists

Doubly linked list with a single node

Data

Next

— Previous

Node

Doubly linked list with two nodes

A B

| Data Data |

Next > Next

1 Previous | =« Previous

Inserting a node at the beginning

* Firstly, the next pointer of a new node should point to
the head node of the existing list

* The prev pointer of the head node of the existing list
should point to the new node

* Finally, mark the new node as the head node in the list

Inserting a node at the end

A B

Data Data

Next > Next @

Previous =« Previous *

New node

Previous @ Data

Next

v

| Previous

* Make the prev pointer of the new node point to the previous tail node
* Make the previous tail node point to the new node

* Finally, update the tail pointer so that the tail pointer now points to the
new node

Inserting a node In the middle

Data

|data

Next

New Node

Dala

Next

Previous

Data

Next

Previous

!

Next

1 Previous

P rt v

1 Previous

f

current

» None

Deleting a node in the middie

. .
» .
. .
. .
"y .
.
p .
> .
- .
.
’ \‘

| Data J ‘ | Data

Next - - > Next

~ Previous ' - Previous
V.

Previous

Circular lists

Circular list, singly-linked

Circular list, doubly-linked

Data

Next

IR 2

Data

Next

IR

Previous ¢

Data

Next ¢

Previous |e-

Previous

A

C

Practical applications of linked lists

Applications

* Singly linked list
* Represent a sparse matrix or a polynomial
* Dynamically allocated memory (heap)

* Doubly linked list

e Thread scheduler to maintain list of
processes running

* Most Recently Used (MRU) and Least
Recently Used (LRU) caches in the OS

* Undo and Redo functionality

Applications

 Circular linked list
* Round-robin scheduling

e Implement Undo or Redo in Word, or Back
in a browser

* Fibonacci heap

* Multiplayer games swap between players
INn a loop

