6 Trees

For COMSC 132

Sam Bowne Oct 1, 2024

Topics

* ferminology

e Binary trees

* [ree traversal

* Binary search trees

Terminology

Terms

e Node

e Each circled
letter

 Any data
structure

e Root node

e Has no
parent node

 Subtree
e Like FKL

0,
PN
(&)

&

Root Node

Edge

Terms

* Degree of a
node

* Number of
children of a
node

* A has degree
2

 Leaf node

e Has no
children

JKLMEI

0,
PN
(&)

&

Root Node

Edge

Terms

e Parent

e Node
connected to
a lower node

* Ais the
parent of
B and C

* Child

e B and C are
children of A

0,
PN
(&)

Root Node

Edge

Terms

* Siblings

 All nodes
with the
same parent
node

 Band C are
siblings

Root Node

Edge

Terms

e Level

e Root Is at
level O

e B and C are
at level 1

*DEFHGI
are at level 2

0,
PN
(&)

Root Node

Edge

Terms

* Height of a
tree

e Number of
nodes In the
longest path

 This tree has
height 4

0,
PN
(&)

Root Node

Edge

Terms

* Depth of a
node

e Number of
edges from
the root

* H is at depth
2

Root Node

Edge

Non-linear structures

 Linear structures

e Arrays, lists, stacks, queues

e Data stored in sequential order

* Can be traversed in one pass
 Non-linear structures

 Cannot be traversed in one pass

* Tree has nodes arranged in a parent-child
relationship

* No cycles allowed

Binary trees

Binary trees

* Nodes can have 0, 1, or 2 children

root node

left child right child

Subtrees

e T1 Is the left subtree
* T2 is the right subtree

. ’ - -
. .
ooooooooo

Full binary tree

e All nodes have 0 or 2 children
* No node has 1 child

Q/Qb

[\
O
OP\O

Perfect binary tree
* All nodes filled

* Adding a new node requires increasing the
tree's height

N
S &

Complete binary tree

* Filled with all
possible nodes

* With a possible /
exception at the
lowest level

 All nodes In the O
lowest level are
as far left as
possible

Balanced binary tree

* Height of left
and right
subtrees differ

by no more than
3

Unbalanced binary tree

* Height of left
and right
subtrees differ
by more than 1

Implementation

class Node:
def __init__(self, data):
self.data = data
self.right_child = None
self.left_child = None

root node

nl = Node("root node")

n2 = Node("left child node™)

n3 = Node("right child node™")

n4 = Node("left grandchild node")

left child right child

nhl.left_child = nZ
nl.right_child = n3
nZ2.left_child = n4

Tree traversal

Tree traversal

e Method to visit
all the nodes In
a tree

root node

e |f we start at
the node,
and always
step down to
the left child

* We visit only
three nodes,
as shown

left child right child

Tree traversal methods

e Start from a node
* Visit every child node
* Then proceed to the next sibling
* Three varations:
* in-order, pre-order, post-order
* Level-order traversal
e Start from root node
* Visit all nodes on each level, one by one

In-order traversal

* Visit left subtree recursively
*GDHBE

* Then root node A

* Then right subtree recursively

CF

def inorder(root_node):
current = root_node
1f current 1s None:
return
inorder(current.left_child)
print(current.data)
ihorder(current.right_child)
inorder(nl)

Pre-order traversal

* First root node A

* Traverse left subtree and call an
ordering function recursively

*BDGHE

* Traverse right subtree and call an
ordering function recursively

- CF

def preorder(root_node):
current = root_node
1f current 1s None:
return
print(current.data)
preorder(current.left_child)
preorder(current.right_child)
preorder(nl)

Post-order traversal

* Traverse left subtree and call an
ordering function recursively

- GHDEB

* Traverse right subtree and call an
ordering function recursively

e FC
* Then root node A

def postorder(root_node):
current = root_node
1f current 1is None:
return
postorder(current.left_child)
postorder(current.right_child)
print(current.data)
postorder(nl)

Level-order traversal

*42813510

> level O

____________ £ level 1

———————— > level 2

Level-order traversal

from collections import deque
class Node:
def __init__(self, data):
self.data = data
self.right_child = None
self.left_child = None

root node

nl = Node("root node™)

n2 = Node("left child node")

n3 = Node("right child node™)
n4 = Node("left grandchild node")
nl.left_child = nZ

nl.right_child = n3

nZ2.left_child = n4

left child right child

Level-order traversal

def level_order_traversal(root_node):
list_of_nodes = []
traversal_queue = deque([root_node])
while len(traversal_queue) > 0:
node = traversal_queue.popleft()
list_of_nodes.append(node.data)
1f node.left_child:
traversal_queue.append(node.left_child)
1f node.right_child:
traversal_queue.append(node.right_child)
return list_of_nodes
print(level_order_traversal(nl))

root node

["root node', 'left child node',

'right child node', 'left grandchild node'] left child right child

Applications of binary trees

* In compilers, as expression trees
* [n data compression, in Huffman coding

 Efficient searching, insertion, and deletion of
a list of items

* MacOS uses B-Trees, a variation of binary

search trees, for quick searches in files on
disk

* Priority Queue (PQ)

* Can find and delete maximum or minimum
item in a collection of items in log time

EXxpression trees

* Represents an
arithmetic

expression °

* All leaf nodes
contain operands

 Non-leaf nodes e 0
contain the

operators

Infix notation

* Puts the operator
between the operands

e iIn-order traversal of an
expression tree produces
the Iinfix notation

* This tree produces
3+ 4

Infix notation

* This tree produces
(4 +5)*(5-3)

Prefix notation (Polish)

* Operator comes before
Its operands

* This tree produces
+34

Prefix notation (Polish)

* Operator comes before its operands
* This tree produces
+-833

Postfix notation (reverse Polish)

» Operator comes after its operands

* This tree produces
83-3+

Parsing a reverse Polish expression

e Example:45+53-*

References to new
operands are

added.

Stack

Figure 6.18: Operands 4 and 5 are pushed onto the stack

Parsing a reverse Polish expression

e Example:45+53-*

When a new symbol
IS operator T
Top two to the new
references are _ cubtree is
popped “added
------ -~
Stack Stack

Figure 6.19: Operator + is processed in creating an expression tree

Parsing a reverse Polish expression

e Example:45+53-*

References to new
operands are

added.
—
e @

Figure 6.18: Operands 4 and 5 are pushed onto the stack

Parsing a reverse Polish expression

e Example:45+53-*

A new symbol (-)
operator 1s read

Top two
references are

popped

Stack Stack

Figure 6.20: Operator (-) is processed in creating an expression tree

Parsing a reverse Polish expression

e Example:45+53-*

Binary search trees (BST)

Binary search tree (BST)

* One of the most important and commonly
used structures in applications

» Structurally a binary tree

» Stores data very efficiently

 Fast search, insertion, and deletion
 The values are in order, that Is, sorted

Binary search tree (BST)

* A binary tree with these properties
* The value at any node is greater than

 The values in all the nodes of its left
subtree

e And less than

* The values of all the nodes of the right
subtree

* Equal values are somewhat problematic,
and generally avoided

Binary search tree (BST)

° root node

left child right child

e K2 < K1
e K3 > K1

Binary search tree (BST)

* Fulfills the conditions
 for every node

Not a binary search tree (BST)

e Fails at node 7 and 5

Inserting nodes into a BST

 Compare new element to
the root

 |If less than root, insert
Into left subtree

e Otherwise, insert into
right subtree

* Repeat as needed

Inserting nodes into a BST

Compare

& —

Inserting nodes into a BST

Compare
— @

compare
Ok

Inserting nodes into a BST

Searching the tree

« Compare
search value a
with root
e |If less than root,
move to left
subtree a e

e Otherwise,

move to the
N OROROIRO

e |[terate

Deleting nodes

* No children
* If there is no leaf node, directly remove the node

* One child

* |In this case, we swap the value of that node with
Its child, and then delete the node

* Two children

* |In this case, we first find the in-order successor
or predecessor, swap their values, and then
delete that node

Deleting nodes

* No children

* |f there is no leaf node,
directly remove the node

 Example: Delete A

Deleting nodes

* One child

* In this case, we swap the
value of that node with
Its child, and then delete

the node

Deleting nodes

e Two children

e |n this case, we first find the in-order successor or
predecessor, swap their values, and then delete that node

* Successsor has the minimum value in the right subtree

« Example: delete 9

Finding the minimum and maximum nodes

 For minimum: start at root, take every left node

 For maximum: start at root, take every right node

- -

Path to minimum |
node |

- -

Path to maximum
node

Benefits of a binary search tree

e Better than an array or a linked list

 When we are mostly interested in accessing the elements
frequently

« BST is fast for search, insert, and delete
* Array is fast for search, but slow for insert and delete

e |Linked lists are fast for insert and delete, but slow for search

Properties

Array

Linked list

BST

Data structure

Linear.

Linear.

Non-linear.

Ease of use

Easy to create and use. Average-
case complexity for search, in-

sert, and delete is O(n).

Insertion and deletion are fast,
especially with the doubly
linked list.

Access of elements,
insertion, and deletion
is fast with the average-

case complexity of 0(log

n).

Access complexity

Easy to access elements. Com-

plexity is 0(1).

Only sequential access is

possible, so slow. Average- and

worst-case complexity are 0(n).

Access is fast, but slow
when the tree is unbal-

anced, with a worst-case

complexity of 0(n).

Search complexity

Average- and worst-case com-

plexity are O(n).

It is slow due to sequential
searching. Average- and worst-

case complexity are 0(n).

Worst-case complexity

for searching is 0(n).

Insertion complexity

Insertion is slow. Average- and

worst-case complexity are 0(n).

Average- and worst-case com-

plexity are 0(1).

The worst-case complex-

ity for insertion is O(n).

Deletion complexity

Deletion is slow. Average- and

worst-case complexity are 0(n).

Average- and worst-case com-

plexity are 0(1).

The worst-case complex-

ity for deletion is O(n).

Searching a list

e Listis not sorted
 Complexity O(n)

O 3 / 1 A 0

Binary search tree

» Search is complexity O(log n)

e |f the tree is balanced

Binary search tree

 Unbalanced tree
» Search is complexity O(n)

e Same as a list

