
Sam Bowne Oct 1, 2024

6 Trees
For COMSC 132



• Terminology

•Binary trees

• Tree traversal

•Binary search trees

Topics



Terminology



• Node 
• Each circled 

letter

• Any data 

structure

• Root node 
• Has no 

parent node

• Subtree 
• Like F K L

Terms



• Degree of a 
node 
• Number of 

children of a 
node


• A has degree 
2


• Leaf node

• Has no 

children

• J K L M E I

Terms



• Parent 
• Node 

connected to 
a lower node


• A is the 
parent of  
B and C 

• Child 
• B and C are 

children of A

Terms



• Siblings 
• All nodes 

with the 
same parent 
node


• B and C are 
siblings

Terms



• Level

• Root is at 

level 0

• B and C are 

at level 1

• D E F H G I 

are at level 2

Terms



• Height of a 
tree 
• Number of 

nodes in the 
longest path


• This tree has 
height 4

Terms



• Depth of a 
node 
• Number of 

edges from 
the root


• H is at depth 
2

Terms



• Linear structures

• Arrays, lists, stacks, queues

• Data stored in sequential order

• Can be traversed in one pass


• Non-linear structures

• Cannot be traversed in one pass

• Tree has nodes arranged in a parent-child 

relationship

• No cycles allowed

Non-linear structures



Binary trees



• Nodes can have 0, 1, or 2 children

Binary trees



• T1 is the left subtree

• T2 is the right subtree

Subtrees



• All nodes have 0 or 2 children

• No node has 1 child

Full binary tree



• All nodes filled

• Adding a new node requires increasing the 

tree's height

Perfect binary tree



• Filled with all 
possible nodes


• With a possible 
exception at the 
lowest level


• All nodes in the 
lowest level are 
as far left as 
possible

Complete binary tree



• Height of left 
and right 
subtrees differ 
by no more than 
1

Balanced binary tree



• Height of left 
and right 
subtrees differ 
by more than 1

Unbalanced binary tree



Implementation



Tree traversal



• Method to visit 
all the nodes in 
a tree

• If we start at 

the node, 
and always 
step down to 
the left child


• We visit only 
three nodes, 
as shown

Tree traversal



• Start from a node

• Visit every child node

• Then proceed to the next sibling

• Three varations:

• in-order, pre-order, post-order 

• Level-order traversal 
• Start from root node 
• Visit all nodes on each level, one by one

Tree traversal methods



• Visit left subtree recursively

• G D H B E 

• Then root node A

• Then right subtree recursively

• C F

In-order traversal



• First root node A

• Traverse left subtree and call an 

ordering function recursively

• B D G H E 

• Traverse right subtree and call an 
ordering function recursively

• C F

Pre-order traversal



• Traverse left subtree and call an 
ordering function recursively

• G H D E B 

• Traverse right subtree and call an 
ordering function recursively

• F C 

• Then root node A

Post-order traversal



• 4 2 8 1 3 5 10

Level-order traversal



Level-order traversal



Level-order traversal



• In compilers, as expression trees

• In data compression, in Huffman coding

• Efficient searching, insertion, and deletion of 

a list of items

• MacOS uses B-Trees, a variation of binary 

search trees, for quick searches in files on 
disk


• Priority Queue (PQ) 
• Can find and delete maximum or minimum 

item in a collection of items in log time

Applications of binary trees



• Represents an 
arithmetic 
expression


• All leaf nodes 
contain operands


• Non-leaf nodes 
contain the 
operators

Expression trees



• Puts the operator 
between the operands


• in-order traversal of an 
expression tree produces 
the infix notation


• This tree produces

3 + 4

Infix notation



• This tree produces

(4 + 5) * (5 - 3)

Infix notation



• Operator comes before 
its operands


• This tree produces

+ 3 4

Prefix notation (Polish)



• Operator comes before its operands 
• This tree produces


+ - 8 3 3

Prefix notation (Polish)



• Operator comes after its operands


• This tree produces

8 3 - 3 +

Postfix notation (reverse Polish)



• Example: 4 5 + 5 3 - *

Parsing a reverse Polish expression



• Example: 4 5 + 5 3 - *

Parsing a reverse Polish expression



• Example: 4 5 + 5 3 - *

Parsing a reverse Polish expression

5

3



• Example: 4 5 + 5 3 - *

Parsing a reverse Polish expression



• Example: 4 5 + 5 3 - *

Parsing a reverse Polish expression



Binary search trees (BST)



• One of the most important and commonly 
used structures in applications


• Structurally a binary tree

• Stores data very efficiently

• Fast search, insertion, and deletion

• The values are in order, that is, sorted

Binary search tree (BST)



• A binary tree with these properties

• The value at any node is greater than

• The values in all the nodes of its left 

subtree

• And less than

• The values of all the nodes of the right 

subtree

• Equal values are somewhat problematic, 

and generally avoided

Binary search tree (BST)



• K2 < K1

• K3 > K1

Binary search tree (BST)



• Fulfills the conditions

• for every node

Binary search tree (BST)



• Fails at node 7 and 5

Not a binary search tree (BST)



• Compare new element to 
the root

• If less than root, insert 

into left subtree

• Otherwise, insert into 

right subtree

• Repeat as needed

Inserting nodes into a BST



Inserting nodes into a BST



Inserting nodes into a BST



Inserting nodes into a BST



• Compare 
search value 
with root


• If less than root, 
move to left 
subtree


• Otherwise, 
move to the 
right subtree


• Iterate

Searching the tree



• No children 
• If there is no leaf node, directly remove the node 


• One child 
• In this case, we swap the value of that node with 

its child, and then delete the node

• Two children 
• In this case, we first find the in-order successor 

or predecessor, swap their values, and then 
delete that node

Deleting nodes



• No children 
• If there is no leaf node, 

directly remove the node 

• Example: Delete A

Deleting nodes



• One child 
• In this case, we swap the 

value of that node with 
its child, and then delete 
the node

Deleting nodes



• Two children 
• In this case, we first find the in-order successor or 

predecessor, swap their values, and then delete that node

• Successsor has the minimum value in the right subtree

• Example: delete 9

Deleting nodes



• For minimum: start at root, take every left node 

• For maximum: start at root, take every right node 

Finding the minimum and maximum nodes



• Better than an array or a linked list

• When we are mostly interested in accessing the elements 

frequently

• BST is fast for search, insert, and delete

• Array is fast for search, but slow for insert and delete

• Linked lists are fast for insert and delete, but slow for search

Benefits of a binary search tree





• List is not sorted

• Complexity O(n)

Searching a list



• Search is complexity O(log n)

• If the tree is balanced

Binary search tree



• Unbalanced tree

• Search is complexity O(n)

• Same as a list

Binary search tree



Ch 6


