6 Trees

For COMSC 132

Sam Bowne Oct 1, 2024

Topics

- Terminology
- Binary trees
- Tree traversal
- Binary search trees

Terminology

- Node
 - Each circled letter
 - Any data structure
- Root node
 - Has no parent node
- Subtree
 - Like F K L

- Degree of a node
 - Number of children of a node
 - A has degree2
- Leaf node
 - Has no children
 - JKLMEI

- Parent
 - Node connected to a lower node
 - A is the parent of B and C
- Child
 - B and C are children of A

- Siblings
 - All nodes
 with the
 same parent
 node
 - B and C are siblings

- Level
 - Root is at level 0
 - B and C are at level 1
 - **DEFHGI** are at level 2

- Height of a tree
 - Number of nodes in the longest path
 - This tree has height 4

- Depth of a node
 - Number of edges from the root
 - H is at depth2

Non-linear structures

- Linear structures
 - Arrays, lists, stacks, queues
 - Data stored in sequential order
 - Can be traversed in one pass
- Non-linear structures
 - Cannot be traversed in one pass
 - Tree has nodes arranged in a parent-child relationship
 - No cycles allowed

Binary trees

Binary trees

Nodes can have 0, 1, or 2 children

Subtrees

- T1 is the left subtree
- T2 is the right subtree

Full binary tree

- All nodes have 0 or 2 children
- No node has 1 child

Perfect binary tree

- All nodes filled
- Adding a new node requires increasing the tree's height

Complete binary tree

- Filled with all possible nodes
- With a possible exception at the lowest level
- All nodes in the lowest level are as far left as possible

Balanced binary tree

 Height of left and right subtrees differ by no more than 1

Unbalanced binary tree

 Height of left and right subtrees differ by more than 1

Implementation

```
class Node:
    def __init__(self, data):
        self.data = data
        self.right_child = None
        self.left_child = None
```

```
n1 = Node("root node")
n2 = Node("left child node")
n3 = Node("right child node")
n4 = Node("left grandchild node")
```


n1.left_child = n2
n1.right_child = n3
n2.left_child = n4

Tree traversal

Tree traversal

- Method to visit all the nodes in a tree
 - If we start at the node, and always step down to the left child
 - We visit only three nodes, as shown

Tree traversal methods

- Start from a node
 - Visit every child node
 - Then proceed to the next sibling
 - Three varations:
 - in-order, pre-order, post-order
- Level-order traversal
 - Start from root node
 - Visit all nodes on each level, one by one

In-order traversal

- Visit left subtree recursively
 - GDHBE
- Then root node A
- Then right subtree recursively
 - C F

```
def inorder(root_node):
    current = root_node
    if current is None:
        return
    inorder(current.left_child)
    print(current.data)
    inorder(current.right_child)
inorder(n1)
```


Pre-order traversal

- First root node A
- Traverse left subtree and call an ordering function recursively
 - BDGHE
- Traverse right subtree and call an ordering function recursively
 - C F

```
def preorder(root_node):
    current = root_node
    if current is None:
        return
    print(current.data)
    preorder(current.left_child)
    preorder(current.right_child)
preorder(n1)
```


Post-order traversal

- Traverse left subtree and call an ordering function recursively
 - GHDEB
- Traverse right subtree and call an ordering function recursively
 - F C
- Then root node A

```
def postorder( root_node):
    current = root_node
    if current is None:
        return
    postorder(current.left_child)
    postorder(current.right_child)
    print(current.data)
postorder(n1)
```


Level-order traversal

• 42813510

Level-order traversal

```
from collections import deque
class Node:
    def __init__(self, data):
        self.data = data
        self.right_child = None
        self.left_child = None
n1 = Node("root node")
n2 = Node("left child node")
n3 = Node("right child node")
n4 = Node("left grandchild node")
n1.left_child = n2
n1.right\_child = n3
n2.left_child = n4
```


Level-order traversal

```
def level_order_traversal(root_node):
     list_of_nodes = []
     traversal_queue = deque([root_node])
     while len(traversal_queue) > 0:
         node = traversal_queue.popleft()
         list_of_nodes.append(node.data)
         if node.left_child:
             traversal_queue.append(node.left_child)
                                                                                   root node
             if node.right_child:
                                                                            n1
                 traversal_queue.append(node.right_child)
     return list_of_nodes
 print(level_order_traversal(n1))
                                                               n2
['root node', 'left child node',
'right child node', 'left grandchild node']
                                                             left child
                                                                                     right child
```

Applications of binary trees

- In compilers, as expression trees
- In data compression, in Huffman coding
- Efficient searching, insertion, and deletion of a list of items
 - MacOS uses B-Trees, a variation of binary search trees, for quick searches in files on disk
- Priority Queue (PQ)
 - Can find and delete maximum or minimum item in a collection of items in log time

Expression trees

- Represents an arithmetic expression
- All leaf nodes contain operands
- Non-leaf nodes contain the operators

Infix notation

- Puts the operator between the operands
- in-order traversal of an expression tree produces the infix notation
- This tree produces

$$3 + 4$$

Infix notation

• This tree produces

$$(4 + 5) * (5 - 3)$$

Prefix notation (Polish)

- Operator comes before its operands
- This tree produces

$$+34$$

Prefix notation (Polish)

- Operator comes before its operands
- This tree produces

Postfix notation (reverse Polish)

Operator comes after its operands

This tree produces

$$83 - 3 +$$

• Example: 45+53-*

• Example: 45+53-*

• Example: 45 + 53 - *

• Example: 45+53-*

• Example: 45+53-*

- One of the most important and commonly used structures in applications
- Structurally a binary tree
- Stores data very efficiently
- Fast search, insertion, and deletion
- The values are in order, that is, sorted

- A binary tree with these properties
 - The value at any node is greater than
 - The values in all the nodes of its left subtree
 - And less than
 - The values of all the nodes of the right subtree
 - Equal values are somewhat problematic, and generally avoided

- K2 < K1
- K3 > K1

Fulfills the conditions

for every node

Not a binary search tree (BST)

Fails at node 7 and 5

- Compare new element to the root
 - If less than root, insert into left subtree
 - Otherwise, insert into right subtree
- Repeat as needed

Searching the tree

 Compare search value with root

 If less than root, move to left subtree

 Otherwise, move to the right subtree

Iterate

No children

If there is no leaf node, directly remove the node

One child

 In this case, we swap the value of that node with its child, and then delete the node

Two children

 In this case, we first find the in-order successor or predecessor, swap their values, and then delete that node

- No children
 - If there is no leaf node, directly remove the node
- Example: Delete A

One child

 In this case, we swap the value of that node with its child, and then delete the node

Two children

- In this case, we first find the in-order successor or predecessor, swap their values, and then delete that node
- Successor has the minimum value in the right subtree
- Example: delete 9

Finding the minimum and maximum nodes

- For minimum: start at root, take every left node
- For maximum: start at root, take every right node

Benefits of a binary search tree

- Better than an array or a linked list
 - When we are mostly interested in accessing the elements frequently
- BST is fast for search, insert, and delete
- Array is fast for search, but slow for insert and delete
- Linked lists are fast for insert and delete, but slow for search

Properties	Array	Linked list	BST
Data structure	Linear.	Linear.	Non-linear.
Ease of use	Easy to create and use. Average- case complexity for search, in- sert, and delete is $O(n)$.	Insertion and deletion are fast, especially with the doubly linked list.	Access of elements, insertion, and deletion is fast with the average-case complexity of O(log n).
Access complexity	Easy to access elements. Complexity is 0(1).	Only sequential access is possible, so slow. Average- and worst-case complexity are $0(n)$.	Access is fast, but slow when the tree is unbalanced, with a worst-case complexity of O(n).
Search complexity	Average- and worst-case complexity are $O(n)$.	It is slow due to sequential searching. Average- and worst-case complexity are 0(n).	Worst-case complexity for searching is 0(n).

Insertion complexity	Insertion is slow. Average- and	Average- and worst-case com-	The worst-case complex-
	worst-case complexity are 0(n).	plexity are 0(1).	ity for insertion is 0(n).
Deletion complexity	Deletion is slow. Average- and	Average- and worst-case com-	The worst-case complex-
	worst-case complexity are 0(n).	plexity are 0(1).	ity for deletion is 0(n).

Searching a list

- · List is not sorted
- Complexity O(n)

Binary search tree

Search is complexity O(log n)

If the tree is balanced

Binary search tree

Unbalanced tree

Search is complexity O(n)

Same as a list

