
Sam Bowne Oct 6, 2024

7 Heaps and Priority 
Queues
For COMSC 132



Heaps



• A specialization of a tree

• Nodes are ordered, with a heap property

• Two types

• max heap

• min heap

Heaps



• Each parent node 
value is greater 
than or equal to all 
its children


• root node has the 
highest value

max heap



• Each parent node 
value is less than or 
equal to all its 
children


• root node has the 
lowest value

min heap



• A heap can be any 
kind of tree


• Most commonly, 
it's a binary tree


• A complete 
binary tree fills 
each row before 
starting the next 
one

Binary Trees



• The children of 
node at index n

• Left child at index 

2n

• Right child at 

index 2n+1 
• Dummy 0 at index 0

Index positions



• Add new element at the end

• Then rearrange the nodes to restore the 

heap property 
• "heapifying"

Inserting into a heap



• Compare new node to its parent

• Swap if necessary

Inserting into a heap



• Repeat the compare-
and-swap operation


• Complexity O(log n) 

• On following slides, 
we'll build a heap by 
inserting these 
values:


• 4, 8, 7, 2, 9, 10, 5, 1, 
3, 6 

Inserting into a heap







Last step



• Code to build 
the heap from 
the last few 
slides


• Complexity 
appears to be  
O(n log n) * 

• The resulting list 
is not simply 
sorted


• * see next slide

Building the heap



• We do n inserts: O(n)

• After each one, we heapify: O(log n)

• So complexity O(n log n) 
• This is an upper bound


• It's actually O(n) as explained in this video

• https://youtu.be/B7hVxCmfPtM?t=2082


• Because most nodes stay near the bottom of 
the tree

• So heapifying from the bottom is really of 

O(1)

Heap build complexity

https://youtu.be/B7hVxCmfPtM?t=2082


• It's actually O(n) as explained in this video

• https://youtu.be/B7hVxCmfPtM?t=2082

Heap build complexity



• Most often, we delete the root

• To find min or max

Delete operation



• Move last element to the root

Delete operation



• Heapify the tree
Delete operation



• Shrinks heap by one

• Returns value of root node

Delete at root code



• Builds heap

• Deletes root

Example



• Delete element

• Move last element to replace it

Deleting from a specific location



• Heapifying

• Compare to root node

• Then compare to children

Deleting from a specific location



• After a swap,

• Comparing to children again

Deleting from a specific location



• Very suitable for a large number of elements

1. Create a min-heap from the elements

2. Read and delete root node, then heapify

3. Repeat step 2 until we get all the elements

Heap sort



• Building the heap: O(n) 
• Deleting the root occurs n times

• Each time, we heapify from the root:  

O(log n) 
• So heap sort has complexity O(n log n)

Heap sort complexity



Priority Queues



• A simple queue follows the FIFO principle

• First in, first out


• A priority queue attaches a priority to the 
data

• Data with highest priority is retrieved first

• Ties are resolved with FIFO

Priority queues



• CPU scheduling

• Dijkstra's shortest path

• A* algorithm 

• To find the shortest path between two 

nodes

• Huffman codes

• For data compression

Priority queue applications



• Numbers represent priorities

Priority queue



Creating a priority queue



Ch 7


