7 Heaps and Priority Queues

For COMSC 132

Sam Bowne

Heaps

Heaps

- A specialization of a tree
- Nodes are ordered, with a heap property
- Two types
 - max heap
 - min heap

max heap

 Each parent node value is greater than or equal to all its children

 root node has the highest value

min heap

Binary Trees

- A heap can be any kind of tree
- Most commonly, it's a binary tree
- A complete binary tree fills each row before starting the next one

All rows are filled.

Index positions

- The children of node at index n
 - Left child at index2n
 - Right child at index 2n+1
- Dummy 0 at index 0

Index	0	1	2	3	4	5
Value	0	Α	В	C	D	Е

Inserting into a heap

- Add new element at the end
- Then rearrange the nodes to restore the heap property

Inserting into a heap

- Compare new node to its parent
- Swap if necessary

Inserting into a heap

- Repeat the compareand-swap operation
- Complexity O(log n)

- On following slides, we'll build a heap by inserting these values:
- 4, 8, 7, 2, 9, 10, 5, 1,3, 6

Last step

```
def insert(self, item):
    self.heap.append(item)
    self.size += 1
    self.arrange(self.size)
```



```
def arrange(self, k):
    while k // 2 > 0:
        if self.heap[k] < self.heap[k//2]:
            self.heap[k], self.heap[k//2] = self.heap[k//2], self.heap[k]
        k //= 2</pre>
```

Building the heap

- Code to build the heap from the last few slides
- Complexity
 appears to be
 O(n log n) *
- The resulting list is not simply sorted
- * see next slide

```
h = MinHeap()
for i in (4, 8, 7, 2, 9, 10, 5, 1, 3, 6):
    h.insert(i)
```



```
[0, 1, 2, 5, 3, 6, 10, 7, 8, 4, 9]
```

Heap build complexity

- We do *n* inserts: O(n)
- After each one, we heapify: O(log n)
- So complexity O(n log n)
 - This is an upper bound
- It's actually O(n) as explained in this video
 - https://youtu.be/B7hVxCmfPtM?t=2082
- Because most nodes stay near the bottom of the tree
 - So heapifying from the bottom is really of O(1)

Heap build complexity

- It's actually O(n) as explained in this video
- https://youtu.be/B7hVxCmfPtM?t=2082

Delete operation

- Most often, we delete the root
 - To find min or max

Delete operation

Move last element to the root

Delete operation

Heapify the tree


```
def minchild(self, k):
    if k * 2 + 1 > self.size:
        return k * 2
    elif self.heap[k*2] < self.heap[k*2+1]:
        return k * 2
    else:
        return k * 2 + 1</pre>
```



```
def sink(self, k):
    while k * 2 <= self.size:
        mc = self.minchild(k)
        if self.heap[k] > self.heap[mc]:
            self.heap[k], self.heap[mc] = self.heap[mc], self.heap[k]
        k = mc
```

Delete at root code

- Shrinks heap by one
- Returns value of root node

```
def delete_at_root(self):
    item = self.heap[1]
    self.heap[1] = self.heap[self.size]
    self.size -= 1
    self.heap.pop()
    self.sink(1)
    return item
```

Example

- Builds heap
- Deletes root

```
h = MinHeap()
for i in (2, 3, 5, 7, 9, 10, 6):
    h.insert(i)
print(h.heap)
n = h.delete_at_root()
print(n)
print(h.heap)
```

```
[0, 2, 3, 5, 7, 9, 10, 6]
2
[0, 3, 6, 5, 7, 9, 10]
```

Deleting from a specific location

- Delete element
- Move last element to replace it

Deleting from a specific location

- Heapifying
- Compare to root node
- Then compare to children

Deleting from a specific location

- After a swap,
- Comparing to children again

Heap sort

- Very suitable for a large number of elements
 - 1. Create a min-heap from the elements
 - 2. Read and delete root node, then heapify
 - 3. Repeat step 2 until we get all the elements

Heap sort complexity

- Building the heap: O(n)
- Deleting the root occurs n times
 - Each time, we heapify from the root:
 O(log n)
- So heap sort has complexity O(n log n)

Priority Queues

Priority queues

- A simple queue follows the FIFO principle
 - First in, first out
- A priority queue attaches a priority to the data
 - Data with highest priority is retrieved first
 - Ties are resolved with FIFO

Priority queue applications

- CPU scheduling
- Dijkstra's shortest path
- A* algorithm
 - To find the shortest path between two nodes
- Huffman codes
 - For data compression

Priority queue

Numbers represent priorities

Creating a priority queue

