7 Heaps and Priority
Queues

For COMSC 132

Sam Bowne Oct 6, 2024

Heaps

Heaps

* A specialization of a tree
* Nodes are ordered, with a heap property
* Two types

* max heap

* min heap

max heap

 Each parent node
value Is greater
than or equal to all °
its children
* root node has the
highest value e e

min heap

» Each parent node 0
value is less than or
equal to all its

children
* root node has the ° °

lowest value

@@ =
(») &

Binary Trees

* A heap can be any
Kind of tree

* Most commonly,
it's a binary tree

* A complete
binary tree fills
each row before
starting the next
one

. All rows are
filled.

Index positions

e The children of
node at index n

e | eft child at index
2n

* Right child at
index 2n+1

* Dummy O at index O

class MinHeap:
def __1init__(self):
self.heap = [0]
self.s1ze = 0

Inserting into a heap

e Add new element at the end

* Then rearrange the nodes to restore the
heap property

. "heapifying" :

Inserting into a heap

 Compare new node to its parent
e Swap if necessary

Inserting into a heap

* Repeat the compare-
and-swap operation

 Complexity O(log n)

* On following slides,
we'll build a heap by
inserting these
values:

*4,8,7,2,9,10, 5, 1,
3, 6

" & o

(i) insert 4 (i) insert 8 (iii) insert 7

(v)insert9 (vi) insert 10

900) OO @

(vii) insert 5

Last step

def insert(self, item):
self.heap.append(item)
self.size += 1
self.arrange(self.size)

def arrange(self, k):
while k // 2 > 0:
1f self.heap[k] < self.heap[k//2]:
self.heap[k], self.heap[k//2]
k //= 2

self.heap[k//2], self.heap[k]

Building the heap

e Code to build
the heap from
the last few
slides

» Complexity
appears to be
O logn)*

* The resulting list
IS not simply
sorted

e * gee next slide

h = MinHeap()
for 1 1n (4, 8, 7, 2, 9, 10, 5, 1, 3, 6):

h.insert(1)

Qo 96 (0 @

(e, 1, 2, 5, 3, 6, 10, 7, 8, 4, 9]

Heap build complexity

* We do n inserts: O(n)

» After each one, we heapify: O(log n)

* So complexity O(n log n)
* This is an upper bound

* [t's actually O(n) as explained in this video
e https.//youtu.be/B7hVxCmfPtM?1=2082

* Because most nodes stay near the bottom of
the tree

* S0 heapifying from the bottom is really of
O(1)

https://youtu.be/B7hVxCmfPtM?t=2082

Heap build complexity

e [t's actually O(n) as explained in this video
* https://youtu.be/B7hVxCmfPtM?t=2082

h/-’r hodes m“\ (w:/L L, nfg wihloel .. | hote 1A%

[W——

l ‘m((Ah(Qf(\\,oyh I H‘\Q /A)Y "D‘

'\/g (1 c)+ (2)+ “//c(% C)f \(()V\)

Delete operation

 Most often, we delete the root
e To find min or max

Delete

2 o
(5) (3,

4 5 6

(D) (@909 ()7

Delete operation

* Move last element to the root

move

Delete Operation def minchild(self, k):

1f k ¥ 2 + 1 > self.size:
return k * 2

PS Heapify the tree eliFrZitir.]hEaz[I;*Z] < self.heap[k*2+1]:

else:

return k * 2 + 1

no swap

def sink(self, k):
while k * 2 <= self.size:
mc = self.minchild(k)
1f self.heap[k] > self.heap[mc]:
self.heap[k], self.heap[mc] = self.heap[mc], self.heap[k]
k = mc

Delete at root code

e Shrinks heap by one
e Returns value of root node

def delete_at_root(self):
1tem = self.heap[1]
self.heap[1l] = self.heap[self.s1ize]
self.s1ze -= 1
self.heap.pop()
self.sink(1)
return i1tem

Example

* Builds heap
e Deletes root

h = MinHeap()

for 1 1n (2, 3, 5, 7, 9, 10, 6):
h.insert(1)

printCh.heap)

n = h.delete_at_root()

print(n)

printCh.heap)

[0, 2, 3,5, 7, 9, 10, 6]
2
[0, 3, 6, 5, 7, 9, 10]

Deleting from a specific location

* Delete element
* Move last element to replace it

< ace 1S move
ll] deleted node

Deleting from a specific location

* Heapifying
 Compare to root node
* Then compare to children

Root
Compare /. /I) Koot
! >\ Vo2 \
\
.. ()
2 4
/’ﬁ\/ \,/\\, ¥ 3 N~
4& 15) (9) — s O l/())
¥ i & o X)\Q ‘ \7/ \
N = R | v
CR (n > /m) (12) St Namm 2 o Je===
. =y & = Cs) | n) u 10\ (12
e = & W
{ /
(8) a
— _ 8 /" Smaller

Deleting from a specific location

» After a swap,
* Comparing to children again

Ruul—\ R t_
/<\I_,/f\ <l \)
e \\/_ SN
9 N\ P N
ﬁ\{/ KT/ {/5 \<' <9 <
=X
o TN i A ,/x \,_]\ -
| U @ \m/ \12 (/8 @ Qo\ :}/lz\
T />\/ =/ \\./
:\ij (n_\/

Heap sort

* Very suitable for a large number of elements
1. Create a min-heap from the elements
2. Read and delete root node, then heapify
3. Repeat step 2 until we get all the elements

Heap sort complexity

* Building the heap: O(n)
* Deleting the root occurs n times

* Each time, we heapify from the root:
O(log n)

* S0 heap sort has complexity O(n log n)

Priority Queues

Priority queues

* A simple queue follows the FIFO principle
e First in, first out

* A priority queue attaches a priority to the
data

* Data with highest priority is retrieved first
* Ties are resolved with FIFO

Priority queue applications

* CPU scheduling
e Dijkstra's shortest path
* A* algorithm

* To find the shortest path between two
nodes

 Huffman codes
* For data compression

Priority queue

 Numbers represent priorities

@ Enqueue @ Dequeue
24
1

Back Front

Creating a priority queue

Enqueue elements

i 3 - BRSO R from this end.
Dequeue elements
from this end based .-
on the priority.] 3 - 8 is enqueued
8 3 2 - 2 is enqueued
8 6 3 2 <«—— 6 is enqueued

10 8 6 3 2 |=— 10 is enqucued

