
Sam Bowne Oct 12, 2024

8 Hash Tables
For COMSC 132

• Arrays and lists store data elements in
sequence

• They are addressed by index number

Arrays and lists

• Elements are accessed by a keyword
rather than an index number

•Data items are stored in key-value
pairs similar to dictionaries

•Dictionaries are often built using hash
tables

•Hash tables store data in a very
efficient way

•Data retrieval can be very fast

Hash tables

• Data stored in
key:value pairs

Dictionary

• This hash function is

• sum(ord) % 256

Hash Table

keyword hash Value
Basant 89 9829012345
Ram 32 9829012346

Shyam 2 9829012347
Sita 145 9829012348

d = {"Basant" : "9829012345",
"Ram": "9829012346", "Shyam":
"9829012347", "Sita":
"9829012348"}
for name in d:
 key = 0
 for c in name:
 key += ord(c)
 key = key % 256
 print(name, key)

• Input is data of any size

• Output is a small integer value

• Consider this hash function

• sum(map(ord, 'hello world'))

• It adds the ASCII values of the characters

Hashing functions

• These two strings have the same hash value

• hello, world

• gello, xorld

Hash collision

• Produces a unique hash value for any input

• BUT perfection makes the hash function

slow

• So we use a fast one and develop a strategy

to handle the collisions

Perfect hashing function

• Some collisions are
prevented

• Some remain

Add a multiplier

• Sample hash function

• Sum ASCII values, take mod 256

Resolving collisions

• hello world and world hello collide

Resolving collisions

• Collisions are resolved by searching
(probing) for an alternate position to store
the data

• Three popular methods

• Linear probing
• Quadratic probing
• Double hashing

Open addressing

• Add 1 to the hash value that collided

• repeat until a free hash value is found

Linear probing

• The hash table may have clusters of items

• consecutive occupied positions

• Parts of the table may become dense

• While other parts are empty

• Making the hash table inefficient

Linear probing

• Stores data in a list of size 256

• count is the number of items actually stored

Implementing hash tables

• Start with
underscore

• To indicate a
function intended
for internal use

Hash function

• Implements
linear probing

• check_growth
method
expands the
size of the
hash table if
it's nearly full

Storing elements in a hash table

• Load factor is (used slots) / (total slots)

• Here the MAXLOADFACTOR is 0.65

Growing a hash table

• Checks load factor

• calls self.growth if necessary

Growing a hash table

• Doubles table size

• Inserts all the old values into the new table

Growing a hash table

• Load factor is (used slots) / (total slots)

• Here the MAXLOADFACTOR is 0.65

Growing a hash function

• Compute hash of key

• Look up data at that hash value

• If key item in table matches desired key,

we're done

• Otherwise, add 1 repeatedly until desired

key is found

Retrieving elements from the hash table

Retrieving elements from the hash table

Retrieving elements from the hash table

• Up to now, we use put() and get() to store
and retrieve items from a hash table

• If we implement it as a dictionary, we can
retrieve data with

• ht["good"] instead of ht.get("good")

• Use special methods

• __setitem__()
• __getitem__()

Implementing a hash table as a dictionary

• Example

Implementing a hash table as a dictionary

• Output

Implementing a hash table as a dictionary

• If a collision occurs, try these locations:

• Example: hash table with 7 elements

• Hash function:

Quadratic probing

Quadratic probing

• Suffers from secondary clustering

• elements with the same hash value will

have the same probe sequence

Quadratic probing

• Changed lines are
highlighted

Quadratic probing

• Use two hashing functions

• When a collision occurs, use the second

hash function to choose a new location

• Second hash function should be

• fast and easy to compute

• Never result in 0

• Be different from the first hash function

Double hashing

• A possible second hash function

• Where prime_number is less than table size

Double hashing

Double hashing

• Second hash function

• HashTable defines 
prime_num

Double hashing

Double hashing

• Another way to handle collisions

• Each slot in the hash table points to a list of

stored values

Separate chaining

• Slows down if hash table is full

• List searches can be O(n)

Separate chaining

• Better to use Binary Search Trees instead
of lists

Separate chaining

• Used by compilers and interpreters

• To keep track of the symbols and other

entities in a program

• Objects, classes, variables, function

names

• Example

• This program has two  

symbols

• name and age

Symbol tables

• x

Symbol tables

Ch 8

