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Graph Example



• Node or vertex

• Endpoints, marked with dots


• Edge: connects two vertices

• Loop: an edge from a node returns to itself

• See node D


• Degree of a vertex/node 
• Total number of edges incidental

• Degree of B is 4

Graph terms



• Adjacency 
• Connection between any two nodes

• C is adjacent to A


• Path: a sequence of vertices and edges 
between two nodes

• CABE is a path from C to E


• Leaf vertex: has degree one

Graph terms



• Directed

• Undirected

• Directed acyclic

• Weighted

• Bipartite

Types of graphs



• Edges are simple lines

• No additional 

information other than 
that the nodes are 
connected 

Undirected graph



• Edges have a direction

• One can only move in the direction of 

the arrow

• Each node has 

an indegree 
and an 
outdegree 

Directed graph



• Indegree: number of edges coming in

• E has indegree 1


• Outdegree: edges going out

• E has outdegree 2

Directed graph



• Isolated vertex has degree 0, like G

• Source vertex has indegree 0, like A

• Sink vertex has outdegree 0, like F

Directed graph



• No cycles -- paths that end at starting node

Directed acyclic graph



• Numeric weight on each edge

• Can be directed or undirected

• Path A-B-C-D has distance 25

• Path A-D has distance 40

Weighted graph



• Two sets of 
nodes


• No edge 
connects nodes 
of the same set


• Can represent 
relationships 
between different 
types of objects


• Like applicants 
and jobs

Bipartite graph



Graph representations



• How a graph is stored in memory

• Two ways

• Adjacency list

• Preferable for sparse graph with few 

edges

• Adjacency matrix

• Preferred for graphs with a lot of edges

Graph representations



Adjacency list

• Storing this in a Python list means we can't 
directly use the vertex labels



• Better to store it as a dictionary

• Easy to add and delete nodes

• But it's difficult to check whether an edge is 

present

• Such as CF

Adjacency list



Adjacency matrix



Adjacency matrix



• Suitable when we 
frequently need to look up 
and check presence of an 
edge between two nodes


• Not suitable if we 
frequently add or delete 
nodes

Adjacency matrix



Graph traversals



• List all vertices

• While keeping track which vertices have 

been visited

• Similar to tree traversal

Graph traversal



• First visit root node

• Then all nodes connected to root

• Then nodes 2 hops from the root

• etc.

Breadth-first search (BFS)



• Visit root A 
• Load queue with adjacent vertices

• In any order

• Here, alphabetical order

Breadth-first search (BFS)



• Visit next node in queue: B 
• Add adjacent vertices to the queue

Breadth-first search (BFS)



• Visit next node in queue: C 
• Add adjacent vertices to the queue

• Excluding ones already visited or queued

• No new nodes added

Breadth-first search (BFS)



• Visit next node in queue: E 
• No new nodes to queue

Breadth-first search (BFS)



• Visit next node in queue: D 
• No new nodes to queue

Breadth-first search (BFS)



Breadth-first search (BFS)



Breadth-first search (BFS)



• Visit root A 
• Add adjacent nodes to queue

Breadth-first search (BFS)



• Visit B

• Add new nodes adjacent to B to the queue

Breadth-first search (BFS)



• Visit D, G, E

• No new nodes adjacent to them

Breadth-first search (BFS)



• Visit F

• Add C to queue

Breadth-first search (BFS)



• Visit C

• Add H to queue

• Visit H

Breadth-first search (BFS)



• Time complexity is O(|V| + |E|)

• |V| is the number of vertices

• |E| is the number of edges


• Useful for constructing the shortest path 
traversal in a graph with minimal iterations


• Can create an efficient web crawler

• And for a navigation system

Breadth-first search (BFS)



• Child nodes are visited before siblings

• Start at root

• Visit a new adjacent node

• Repeat until a dead end

• Then backtrack to previous nodes

• End when backtracking hits the root node

Depth-first search (DFS)



• Visit root A 
• Visit a neighbor B

Depth-first search (DFS)



• Visit other neighbor of root S 
• Visit a new neighbor of S: C

Depth-first search (DFS)



• Visit neighbors of C: D E

Depth-first search (DFS)



• Visit neighbor of E: H 
• Visit neighbor of H: G

Depth-first search (DFS)



• Finally, 
visit F

Depth-first search (DFS)



• Time complexity of DFS is

• O(V + E) when we use an adjacency list

• O(V2) when we use an adjacency matrix

Depth-first search (DFS)



• DFS applications

• Solving maze problems

• Finding connected components

• Cycle detection in graphs

• Finding bridges of a graph

• Removing a "bridge" edge disconnects 

the graph

Depth-first search (DFS)



Minimum Spanning Tree



• A subset of the edges of a connected graph

• Connects all the nodes

• Lowest possible edge weight

• No cycle

Minimum spanning tree



• Greedy approach

• Find the edge with lowest weight

• Add it to the tree


• With each iteration, repeat this process

• Avoiding forming a cycle

Kruskal's minimum spanning tree algorithm



Kruskal's minimum spanning tree algorithm



• Greedy approach

• Find the edge with lowest weight

• Add it to the tree


• With each iteration, repeat this process

• Avoiding forming a cycle

Kruskal's minimum spanning tree algorithm



• Add dotted line to MST

Kruskal's minimum spanning tree algorithm



• Add lines 2 and 3

Kruskal's minimum spanning tree algorithm



• Add lines 4 and 5

Kruskal's minimum spanning tree algorithm



• Add line 6

• Lines 7, 8, and 9 would form a cycle, so skip 

them

• Add line 10

Kruskal's minimum spanning tree algorithm



• Final spanning tree

Kruskal's minimum spanning tree algorithm



• Applications

• Traveling salesman problem

• TV networks

• Tour operations

• LAN networks

• Electric grids


• Time complexity

• O(E log E) or O(E log(V))

Kruskal's minimum spanning tree algorithm



Prim's minimum spanning tree algorithm



• Add shortest path from A: AC

Prim's minimum spanning tree algorithm



• Add shortest path from edge AC: CF 
• Add shortest path from tree: AB

Prim's minimum spanning tree algorithm



• Add shortest path from tree: BD 
• Add shortest path from tree: DG

Prim's minimum spanning tree algorithm



• Add shortest path from tree: FE 
• Add shortest path from tree: GH 
• All remaining paths form cycles

Prim's minimum spanning tree algorithm



• Final spanning tree

Prim's minimum spanning tree algorithm



• Kruskal's: O(E log V) 
• Prim's: O(E + V log V) 
• For a dense graph, E > V, so Prim's is better

• For a sparse graph, E is nearly equal to V, so 

Kruskal's is better

Comparing algorithms
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