9 Graphs and
Algorithms

For COMSC 132

Graph Example

The graph G = (V, E) in Figure 9.7 can be described as below:

.V ={A, B, C, D, E}

® — {{A, B}’ {A’ C}: {B, C}’ {B’ D}’ {C: D}’ {D’ D}’ {B’ E}’ {D’ E}}
. — (V: E)

Graph terms

G
* Node or vertex

* Endpoints, marked with dots
 Edge: connects two vertices
* Loop: an edge from a node returns to itself
*» See node D
* Degree of a vertex/node
* Total number of edges incidental
* Degree of B is 4

Graph terms

C
 Adjacency

* Connection between any two nodes
* Cis adjacent to A

* Path: a sequence of vertices and edges
between two nodes

» CABE is a pathfrom Cto E
* Leaf vertex: has degree one

Types of graphs

* Directed
* Undirected
* Directed acyclic

* Weighted
* Bipartite

Undirected graph

* Edges are simple lines

e No additional
iInformation other than
that the nodes are ° °
connected °

Directed graph

* Edges have a direction

* One can only move in the direction of
the arrow

il OB ONO

and an

outdegree @ e °
O

Directed graph

* Indegree: number of edges coming in
* E has indegree 1

* Outdegree: edges going out
* E has outdegree 2

OB ONGO
O O O
)

Directed graph

* Isolated vertex has degree 0, like G
* Source vertex has indegree 0, like A
» Sink vertex has outdegree 0, like F

Directed acyclic graph

* No cycles -- paths that end at starting node

Weighted graph

* Numeric weight on each edge
* Can be directed or undirected
 Path A-B-C-D has distance 25
 Path A-D has distance 40

Bipartite graph

e Two sets of
nodes

* No edge
connects nodes
of the same set

* Can represent
relationships
between different
types of objects

 Like applicants
and jobs

\
\

4 ;‘\L //
&7

Set U

Graph representations

Graph representations

* How a graph is stored in memory
* Two ways
* Adjacency list

* Preferable for sparse graph with few
edges

* Adjacency matrix
* Preferred for graphs with a lot of edges

Adjacency list

e Storing this in a Python list means we can't
directly use the vertex labels

Vertex A

E— [B,C]

Vertex B | > | A

Vertex C ‘ —_— [A, B, EF]
Vertex E | 3 [B,C]

Vertex F I —_— [C]

Adjacency list

* Better to store it as a dictionary
* Easy to add and delete nodes

e But it's difficult to check whether an edge is

present
e Such as CF

graph = ¢

graph[’
graph[’
graph[’
graph[’

1 '

graph|(

T m M O >
L J voJ Ly vy

lict()

i1
M O > m oo

Adjacency matrix

Adjacency Matrix

Adjacency matrix

matrix_elements = sorted(graph.keys())
cols = rows = len(matrix_elements)

adjacency_matrix = [[@ for x in range(rows)] for y in range(cols)]
edges_list = []

for key 1n matrix_elements:
for neighbor in graph[key]:
edges_l1ist.append((key, neighbor))
print(edges_list)

[C'A", "B, C'A", 'C'), ('B', 'E), ("B, 'C'), ('B', 'A"),
C'C, A, CC, BN, (', ED, CC, FD, CE', BT,
CE', 'CD, CF', ']

Adjacency matrix

for edge 1n edges_list:
index_of_first_vertex = matrix_elements.index(edge[@])
1ndex_of_second_vertex = matrix_elements.index(edge[1])

print(adjacency_matrix)

adjacency_matrix[index_of_first_vertex][index_of_second_vertex] = 1

e Suitable when we
frequently need to look up
and check presence of an
edge between two nodes

UL D e D e B e
(SR
S P P O K

P P, P

(SRS

(SR O R e SR O
e e L L L

* Not suitable if we
frequently add or delete
nodes

Graph traversals

Graph traversal

e List all vertices

* While keeping track which vertices have
been visited

e Similar to tree traversal

Breadth-first search (BFS)

e First visit root node

e Then all nodes connected to root
* Then nodes 2 hops from the root
* elcC.

Breadth-first search (BFS)

* Visit root A

* Load queue with adjacent vertices
* In any order
* Here, alphabetical order

° G Visited | A

o Olhe

Breadth-first search (BFS)

* Visit next node in queue: B
 Add adjacent vertices to the queue

Visited | A| B

Queue [C | E

Breadth-first search (BFS)

* Visit next node in queue: C

 Add adjacent vertices to the queue
* Excluding ones already visited or queued
* No new nodes added

° 0 Visited| A | B | C

o 0 B

Breadth-first search (BFS)

* Visit next node in queue: E
* No new nodes to queue

Breadth-first search (BFS)

* Visit next node in queue: D
* No new nodes to queue

Visited | A | B

Queue

Breadth-first search (BFS)

graph = dict()
graph['A"]

graph
graph

graph

graph
graph

m ©O o > L T O

graph

T oo M m O M O >
[D P I R DN R D P B R D |

M > 0 0 MM T I>

N I I D D D DR D DN DO N D N B B

NN D I D D D DN D DN DO N D N B B

graph

Breadth-first search (BFS)

from collections import deque
def breadth_first_search(graph, root):
visited_vertices = list()
graph_queue = deque([root])
visited_vertices.append(root)
node = root
while len(graph_queue) > 0:
node = graph_queue.popleft()
adj_nodes = graph[node]

1f len(remaining_elements) > 0:
for elem 1n sorted(remaining_elements):
visited_vertices.append(elem)
graph_queue.append(elem)
return visited_vertices

remaining_elements = set(adj_nodes).difference(set(visited_vertices))

Breadth-first search (BFS)

* Visit root A
 Add adjacent nodes to queue

Visited

Qucuc

D

Breadth-first search (BFS)

* Visit B
* Add new nodes adjacent to B to the queue

Visited | A| B

Queue| D| G | E F

Breadth-first search (BFS)

*Visit D, G, E
* No new nodes adjacent to them

/’,’r\\\'
S
/ ‘\ " ‘\
// \ ,’ e 3 |
‘\ \ ' pr . "
/,-\(/ \ —AL Visited AI B/ D|G B
B)~ ‘ e
W ~ \ (H) ..
\\ /’A | \ \‘—/ (;)UC"\: l
\ \ ¢ \
\ ~ /(‘ \\
- T N \
/' \\ \ \7’)5\
E))
\ — - \ \\B/’
\\'7,_,_
G
o

Breadth-first search (BFS)

 Visit F
 Add C to queue

\E/ “Seiame \ (1
\ ‘ A) \ i Queue L
\ N
(£ o)
. Ve

Breadth-first search (BFS)

e Visit C
* Add H to queue
* Visit H

Visited Al B D G

H

Queue

Breadth-first search (BFS)

e Time complexity is O(|V| + |E|)
* (V| iIs the number of vertices
* [E| Is the number of edges

» Useful for constructing the shortest path
traversal in a graph with minimal iterations

e Can create an efficient web crawler
* And for a navigation system

Depth-first search (DFS)

* Child nodes are visited before siblings

e Start at root

* Visit a new adjacent node

* Repeat until a dead end

* Then backtrack to previous nodes

* End when backtracking hits the root node

Depth-first search (DFS)

* Visit root A
* Visit a neighbor B

>
®
Visied [AT T T T 1T T 1T 1 il 171 1T T O I
Sck (BT T T T T T T T ek (8]
,)

wop top

Depth-first search (DFS)

* Visit other neighbor of root S
* Visit a new neighbor of S: C

Visited

sl ¥ P NN N) | |
0

top

A

Depth-first search (DFS)

* Visit neighbors of C: D E

Visited [(ATBIS [CTD Visited [ATB[S[CIDIE

Stack [E Stack [

? 4
top top

Depth-first search (DFS)

* Visit neighbor of E: H
* Visit neighbor of H: G

Visited [ATBTSTCIDTE][H Visited [ATBTSTCIDIEIHIG
Stack G Stack F

4 4

top op

Depth-first search (DFS)

 Finally,
visit F

isited | Al Bl S| C

Depth-first search (DFS)

* Time complexity of DFS is
* O(V + E) when we use an adjacency list
* O(V2) when we use an adjacency matrix

Depth-first search (DFS)

* DFS applications
» Solving maze problems
* FInding connected components
» Cycle detection in graphs
* Finding bridges of a graph

* Removing a "bridge" edge disconnects
the graph

Minimum Spanning Tree

Minimum spanning tree

* A subset of the edges of a connected graph
* Connects all the nodes

* Lowest possible edge weight

* No cycle

A graph A minimum spanning tree

Kruskal's minimum spanning tree algorithm

* Greedy approach

* Find the edge with lowest weight
 Add it to the tree

* With each iteration, repeat this process
* Avoiding forming a cycle

Kruskal's minimum spanning tree algorithm

1. Initialize an empty MST (M) with zero edges
2. Sort all the edges according to their weights

3. For each edge from the sorted list, we add
them one by one to the MST (M) in such a way

that it does not form a cycle

Kruskal's minimum spanning tree algorithm

* Greedy approach

* Find the edge with lowest weight
 Add it to the tree

* With each iteration, repeat this process
* Avoiding forming a cycle

Kruskal's minimum spanning tree algorithm

e Add dotted line to MST

Kruskal's minimum spanning tree algorithm

e Add lines 2 and 3

Kruskal's minimum spanning tree algorithm

e Add lines 4 and 5

Kruskal's minimum spanning tree algorithm

e Add line 6

* Lines 7, 8, and 9 would form a cycle, so skip
them

* Add line 10

,“\l
~

D

Kruskal's minimum spanning tree algorithm

* Final spanning tree

Kruskal's minimum spanning tree algorithm

* Applications
* Traveling salesman problem
* TV networks
* Tour operations
* LAN networks
* Electric grids
* Time complexity
* O(E log E) or O(E log(V))

Prim's minimum spanning tree algorithm

1. Create a dictionary that holds all the edges and
their weights

2. Get the edges, one by one, that have the lowest
cost from the dictionary and grow the tree in

such a way that the cycle is not formed

3. Repeat step 2 until all the vertices are visited

Prim's minimum spanning tree algorithm

* Add shortest path from A: AC

Prim's minimum spanning tree algorithm

* Add shortest path from edge AC: CF
* Add shortest path from tree: AB

Prim's minimum spanning tree algorithm

* Add shortest path from tree: BD
* Add shortest path from tree: DG

Prim's minimum spanning tree algorithm

* Add shortest path from tree: FE
* Add shortest path from tree: GH
* All remaining paths form cycles

Prim's minimum spanning tree algorithm

* Final spanning tree

(A &)
e 6

»
&
O——0O——©

Comparing algorithms

» Kruskal's: O(E log V)
* Prim's: O(E + V log V)
* For a dense graph, E >V, so Prim's Is better

* For a sparse graph, E is nearly equal to V, so
Kruskal's is better

