
Sam Bowne Revised Oct 28, 2024

9 Graphs and
Algorithms
For COMSC 132

Graph Example

• Node or vertex

• Endpoints, marked with dots

• Edge: connects two vertices

• Loop: an edge from a node returns to itself

• See node D

• Degree of a vertex/node
• Total number of edges incidental

• Degree of B is 4

Graph terms

• Adjacency
• Connection between any two nodes

• C is adjacent to A

• Path: a sequence of vertices and edges
between two nodes

• CABE is a path from C to E

• Leaf vertex: has degree one

Graph terms

• Directed

• Undirected

• Directed acyclic

• Weighted

• Bipartite

Types of graphs

• Edges are simple lines

• No additional

information other than
that the nodes are
connected

Undirected graph

• Edges have a direction

• One can only move in the direction of

the arrow

• Each node has 

an indegree 
and an 
outdegree

Directed graph

• Indegree: number of edges coming in

• E has indegree 1

• Outdegree: edges going out

• E has outdegree 2

Directed graph

• Isolated vertex has degree 0, like G

• Source vertex has indegree 0, like A

• Sink vertex has outdegree 0, like F

Directed graph

• No cycles -- paths that end at starting node

Directed acyclic graph

• Numeric weight on each edge

• Can be directed or undirected

• Path A-B-C-D has distance 25

• Path A-D has distance 40

Weighted graph

• Two sets of
nodes

• No edge
connects nodes
of the same set

• Can represent
relationships
between different
types of objects

• Like applicants
and jobs

Bipartite graph

Graph representations

• How a graph is stored in memory

• Two ways

• Adjacency list

• Preferable for sparse graph with few

edges

• Adjacency matrix

• Preferred for graphs with a lot of edges

Graph representations

Adjacency list

• Storing this in a Python list means we can't
directly use the vertex labels

• Better to store it as a dictionary

• Easy to add and delete nodes

• But it's difficult to check whether an edge is

present

• Such as CF

Adjacency list

Adjacency matrix

Adjacency matrix

• Suitable when we
frequently need to look up
and check presence of an
edge between two nodes

• Not suitable if we
frequently add or delete
nodes

Adjacency matrix

Graph traversals

• List all vertices

• While keeping track which vertices have

been visited

• Similar to tree traversal

Graph traversal

• First visit root node

• Then all nodes connected to root

• Then nodes 2 hops from the root

• etc.

Breadth-first search (BFS)

• Visit root A
• Load queue with adjacent vertices

• In any order

• Here, alphabetical order

Breadth-first search (BFS)

• Visit next node in queue: B
• Add adjacent vertices to the queue

Breadth-first search (BFS)

• Visit next node in queue: C
• Add adjacent vertices to the queue

• Excluding ones already visited or queued

• No new nodes added

Breadth-first search (BFS)

• Visit next node in queue: E
• No new nodes to queue

Breadth-first search (BFS)

• Visit next node in queue: D
• No new nodes to queue

Breadth-first search (BFS)

Breadth-first search (BFS)

Breadth-first search (BFS)

• Visit root A
• Add adjacent nodes to queue

Breadth-first search (BFS)

• Visit B

• Add new nodes adjacent to B to the queue

Breadth-first search (BFS)

• Visit D, G, E

• No new nodes adjacent to them

Breadth-first search (BFS)

• Visit F

• Add C to queue

Breadth-first search (BFS)

• Visit C

• Add H to queue

• Visit H

Breadth-first search (BFS)

• Time complexity is O(|V| + |E|)

• |V| is the number of vertices

• |E| is the number of edges

• Useful for constructing the shortest path
traversal in a graph with minimal iterations

• Can create an efficient web crawler

• And for a navigation system

Breadth-first search (BFS)

• Child nodes are visited before siblings

• Start at root

• Visit a new adjacent node

• Repeat until a dead end

• Then backtrack to previous nodes

• End when backtracking hits the root node

Depth-first search (DFS)

• Visit root A
• Visit a neighbor B

Depth-first search (DFS)

• Visit other neighbor of root S
• Visit a new neighbor of S: C

Depth-first search (DFS)

• Visit neighbors of C: D E

Depth-first search (DFS)

• Visit neighbor of E: H
• Visit neighbor of H: G

Depth-first search (DFS)

• Finally,
visit F

Depth-first search (DFS)

• Time complexity of DFS is

• O(V + E) when we use an adjacency list

• O(V2) when we use an adjacency matrix

Depth-first search (DFS)

• DFS applications

• Solving maze problems

• Finding connected components

• Cycle detection in graphs

• Finding bridges of a graph

• Removing a "bridge" edge disconnects

the graph

Depth-first search (DFS)

Minimum Spanning Tree

• A subset of the edges of a connected graph

• Connects all the nodes

• Lowest possible edge weight

• No cycle

Minimum spanning tree

• Greedy approach

• Find the edge with lowest weight

• Add it to the tree

• With each iteration, repeat this process

• Avoiding forming a cycle

Kruskal's minimum spanning tree algorithm

Kruskal's minimum spanning tree algorithm

• Greedy approach

• Find the edge with lowest weight

• Add it to the tree

• With each iteration, repeat this process

• Avoiding forming a cycle

Kruskal's minimum spanning tree algorithm

• Add dotted line to MST

Kruskal's minimum spanning tree algorithm

• Add lines 2 and 3

Kruskal's minimum spanning tree algorithm

• Add lines 4 and 5

Kruskal's minimum spanning tree algorithm

• Add line 6

• Lines 7, 8, and 9 would form a cycle, so skip

them

• Add line 10

Kruskal's minimum spanning tree algorithm

• Final spanning tree

Kruskal's minimum spanning tree algorithm

• Applications

• Traveling salesman problem

• TV networks

• Tour operations

• LAN networks

• Electric grids

• Time complexity

• O(E log E) or O(E log(V))

Kruskal's minimum spanning tree algorithm

Prim's minimum spanning tree algorithm

• Add shortest path from A: AC

Prim's minimum spanning tree algorithm

• Add shortest path from edge AC: CF
• Add shortest path from tree: AB

Prim's minimum spanning tree algorithm

• Add shortest path from tree: BD
• Add shortest path from tree: DG

Prim's minimum spanning tree algorithm

• Add shortest path from tree: FE
• Add shortest path from tree: GH
• All remaining paths form cycles

Prim's minimum spanning tree algorithm

• Final spanning tree

Prim's minimum spanning tree algorithm

• Kruskal's: O(E log V)
• Prim's: O(E + V log V)
• For a dense graph, E > V, so Prim's is better

• For a sparse graph, E is nearly equal to V, so

Kruskal's is better

Comparing algorithms

Ch 9

