9 Graphs and Algorithms

For COMSC 132

Graph Example

The graph G = (V, E) in *Figure 9.1* can be described as below:

- $V = \{A, B, C, D, E\}$
- $E = \{\{A, B\}, \{A, C\}, \{B, C\}, \{B, D\}, \{C, D\}, \{D, D\}, \{B, E\}, \{D, E\}\}\}$
- $\bullet G = (V, E)$

Graph terms

- Node or vertex
 - Endpoints, marked with dots
- Edge: connects two vertices
- Loop: an edge from a node returns to itself
 - See node D
- Degree of a vertex/node
 - Total number of edges incidental
 - Degree of B is 4

Graph terms

- Adjacency
 - Connection between any two nodes
 - C is adjacent to A
- Path: a sequence of vertices and edges between two nodes
 - CABE is a path from C to E
- Leaf vertex: has degree one

Types of graphs

- Directed
- Undirected
- Directed acyclic
- Weighted
- Bipartite

Undirected graph

- Edges are simple lines
- No additional information other than that the nodes are connected

Directed graph

- Edges have a direction
- One can only move in the direction of the arrow
- Each node has an indegree and an outdegree

Directed graph

- Indegree: number of edges coming in
 - E has indegree 1
- Outdegree: edges going out
 - E has outdegree 2

Directed graph

- Isolated vertex has degree 0, like G
- Source vertex has indegree 0, like A
- Sink vertex has outdegree 0, like F

Directed acyclic graph

No cycles -- paths that end at starting node

Weighted graph

- Numeric weight on each edge
- Can be directed or undirected

• Path A-B-C-D has distance 25 • Path A-D has distance 40 40

Bipartite graph

- Two sets of nodes
- No edge connects nodes of the same set
- Can represent relationships between different types of objects
- Like applicants and jobs

Graph representations

Graph representations

- How a graph is stored in memory
- Two ways
 - Adjacency list
 - Preferable for sparse graph with few edges
 - Adjacency matrix
 - Preferred for graphs with a lot of edges

Adjacency list

 Storing this in a Python list means we can't directly use the vertex labels

Adjacency list

- Better to store it as a dictionary
- Easy to add and delete nodes
- But it's difficult to check whether an edge is present
 - Such as CF

```
graph = dict()
graph['A'] = ['B', 'C']
graph['B'] = ['E','C', 'A']
graph['C'] = ['A', 'B', 'E','F']
graph['E'] = ['B', 'C']
graph['F'] = ['C']
```

Adjacency matrix

Adjacency Matrix

	Α	В	С	Е	F
Α	0	1	1	0	0
В	1	0	1	1	0
С	1	1	0	1	1
Е	0	1	1	0	0
F	0	0	1	0	0

Adjacency matrix

```
matrix_elements = sorted(graph.keys())
cols = rows = len(matrix_elements)
```

```
adjacency_matrix = [[0 for x in range(rows)] for y in range(cols)]
edges_list = []
```

```
for key in matrix_elements:
    for neighbor in graph[key]:
        edges_list.append((key, neighbor))
print(edges_list)
```

```
[('A', 'B'), ('A', 'C'), ('B', 'E'), ('B', 'C'), ('B', 'A'), ('C', 'A'), ('C', 'B'), ('C', 'E'), ('C', 'F'), ('E', 'B'), ('E', 'C'), ('F', 'C')]
```

Adjacency matrix

```
for edge in edges_list:
    index_of_first_vertex = matrix_elements.index(edge[0])
    index_of_second_vertex = matrix_elements.index(edge[1])
    adjacency_matrix[index_of_first_vertex][index_of_second_vertex] = 1
print(adjacency_matrix)
```

- Suitable when we frequently need to look up and check presence of an edge between two nodes
- Not suitable if we frequently add or delete nodes

```
[0, 1, 1, 0, 0]
[1, 0, 0, 1, 0]
[1, 1, 0, 1, 1]
[0, 1, 1, 0, 0]
[0, 0, 1, 0, 0]
```

Graph traversals

Graph traversal

- List all vertices
 - While keeping track which vertices have been visited
- Similar to tree traversal

- First visit root node
- Then all nodes connected to root
- Then nodes 2 hops from the root
- etc.

- Visit root A
- Load queue with adjacent vertices
 - In any order
 - Here, alphabetical order

- Visit next node in queue: B
- Add adjacent vertices to the queue

- Visit next node in queue: C
- Add adjacent vertices to the queue
 - Excluding ones already visited or queued
 - No new nodes added

- Visit next node in queue: E
 - No new nodes to queue

- Visit next node in queue: D
 - No new nodes to queue


```
graph = dict()
graph['A'] = ['B', 'G', 'D']
graph['B'] = ['A', 'F', 'E']
graph['C'] = ['F', 'H']
graph['D'] = ['F', 'A']
graph['E'] = ['B', 'G']
graph['F'] = ['B', 'D', 'C']
graph['G'] = ['A', 'E']
graph['H'] = ['C']
```



```
from collections import deque
def breadth_first_search(graph, root):
    visited_vertices = list()
    graph_queue = deque([root])
    visited_vertices.append(root)
    node = root
    while len(graph_queue) > 0:
        node = graph_queue.popleft()
        adj_nodes = graph[node]
        remaining_elements = set(adj_nodes).difference(set(visited_vertices))
        if len(remaining_elements) > 0:
             for elem in sorted(remaining_elements):
                 visited_vertices.append(elem)
                 graph_queue.append(elem)
    return visited_vertices
```

- Visit root A
- Add adjacent nodes to queue

- Visit B
- Add new nodes adjacent to B to the queue

- Visit D, G, E
- No new nodes adjacent to them

- Visit **F**
- Add C to queue

- Visit C
- Add H to queue
- Visit H

- Time complexity is O(|V| + |E|)
 - V is the number of vertices
 - |E| is the number of edges
- Useful for constructing the shortest path traversal in a graph with minimal iterations
- Can create an efficient web crawler
- And for a navigation system

Depth-first search (DFS)

- Child nodes are visited before siblings
- Start at root
- Visit a new adjacent node
- Repeat until a dead end
- Then backtrack to previous nodes
- End when backtracking hits the root node

- Visit root A
- Visit a neighbor B

- Visit other neighbor of root S
- Visit a new neighbor of S: C

• Visit neighbors of C: **D E**

- Visit neighbor of E: H
- Visit neighbor of H: G

Finally, visit **F**

- Time complexity of DFS is
 - O(V + E) when we use an adjacency list
 - O(V2) when we use an adjacency matrix

- DFS applications
 - Solving maze problems
 - Finding connected components
 - Cycle detection in graphs
 - Finding bridges of a graph
 - Removing a "bridge" edge disconnects the graph

Minimum Spanning Tree

Minimum spanning tree

- A subset of the edges of a connected graph
- Connects all the nodes
- Lowest possible edge weight
- No cycle

A graph

A minimum spanning tree

- Greedy approach
- Find the edge with lowest weight
 - Add it to the tree
- With each iteration, repeat this process
 - Avoiding forming a cycle

- 1. Initialize an empty MST (M) with zero edges
- 2. Sort all the edges according to their weights
- 3. For each edge from the sorted list, we add them one by one to the MST (M) in such a way that it does not form a cycle

- Greedy approach
- Find the edge with lowest weight
 - Add it to the tree
- With each iteration, repeat this process
 - Avoiding forming a cycle

Add dotted line to MST

Add lines 2 and 3

Add lines 4 and 5

- Add line 6
- Lines 7, 8, and 9 would form a cycle, so skip them
- Add line 10

Final spanning tree

- Applications
 - Traveling salesman problem
 - TV networks
 - Tour operations
 - LAN networks
 - Electric grids
- Time complexity
 - O(E log E) or O(E log(V))

- Create a dictionary that holds all the edges and their weights
- Get the edges, one by one, that have the lowest cost from the dictionary and grow the tree in such a way that the cycle is not formed
- 3. Repeat step 2 until all the vertices are visited

Add shortest path from A: AC

- Add shortest path from edge AC: CF
- Add shortest path from tree: AB

- Add shortest path from tree: BD
- Add shortest path from tree: DG

- Add shortest path from tree: FE
- Add shortest path from tree: GH
 - All remaining paths form cycles

Final spanning tree

Comparing algorithms

- Kruskal's: O(E log V)
- Prim's: O(E + V log V)
- For a dense graph, E > V, so Prim's is better
- For a sparse graph, E is nearly equal to V, so Kruskal's is better

Ch 9