
Sam Bowne Updated Feb 4, 2025

1. By the C, by the C, by the Beautiful C

For COMSC 142



• https://diveintosystems.org/book/index.html

Free online textbook



• 1.1. Getting Started Programming in C

• 1.2. Input/Output (printf and scanf)

• 1.3. Conditionals and Loops

• 1.4. Functions

• 1.5. Arrays and Strings

• 1.6. Structs

• 1.7. Summary

Topics



• High-level programming language

• Less abstracted from machine language than 

languages like Python, Java, Ruby, or C++

• No support for

• Object-oriented programming

• High-level abstractions like strings, lists, or 

dictionaries in Python

• C code runs more efficiently

• The choice where low-level control and 

efficiency are critical

C



1.1. Getting Started Programming in C



• C requires the main() function

Hello World



• Comments:

• In Python, multiline comments begin and end 

with ''', and single-line comments begin with #.

• In C, multiline comments begin with /* and end 

with */, and single-line comments begin with //.

• Importing library code:

• In Python, libraries are included (imported) 

using import.

• In C, libraries are included (imported) 

using #include. All #include statements appear at 
the top of the program, outside of function bodies.

Python vs. C



• Blocks:

• In Python, indentation denotes a block.

• In C, blocks (for example, function, loop, and 

conditional bodies) start with { and end with }.

• The main function:

• In Python, no main() is required

• In C, int main(void){ } defines the main function.

• The main function returns a value of type int

• Returns 0 if no error

• The void means it doesn’t expect parameters

Python vs. C



• Statements:

• In Python, each statement is on a separate line.

• In C, each statement ends with a semicolon ; 
• Statements must be within the body of some 

function (in main in this example).

• Output:

• In Python, the print function prints a formatted 

string.

• In C, the printf function prints a formatted string. 

• %f indicates floating point

Python vs. C



• Indentation:

• In C, indentation doesn’t have meaning

• It’s good programming style to indent 

statements

• Output: 

• C’s printf function doesn’t automatically print 

a newline character at the end

• Programmers need to explicitly specify a 

newline character (\n) in the format string

C



• A C program must have a function 
named main, and its return type must be int.


• The C main function has an 
explicit return statement to return an int value 
(by convention, main should return 0 if the 
main function is successfully executed without 
errors).

main() Function



• The interpreter is like a 
virtual machine 
Python runs on


• Converts Python 
statements to 
machine code at 
runtime

Python Interpreter



• C code is 
compiled 
into a binary 
executable


• Default name 
a.out 

• Command 
lines

$ gcc hello.c

$ ./a.out

1.1.1. Compiling and Running C Programs



• On Debian, you must first do this to install 
gcc


sudo apt update 
sudo apt install build-essential

Demo



Demo



• Variables have scope and type 
• Scope

• Where in the program it can be used


• Type

• What range of values it can have

1.1.2. Variables and C Numeric Types







• The C char type stores a numeric value. 
However, it’s often used by programmers to 
store the value of an ASCII character.


• The thing called a "string" in C is just a byte 
array

• printf("this is a C string\n");

1.1.3. C Types



C Numeric Types



• char might be signed or unsigned

• Depending on the implementation

Unsigned Integers



• Shows the actual sizes of types, which may 
vary

sizeof



• add (+) and subtract (-)

• multiply (*), divide (/), and mod (%)

• assignment (=)

• assignment with update (+=, -=, *=, /=, 

and %=)

• increment (++) and decrement (--)

Arithmetic Operators



• ++x  increment x first, then use its value.

• x++  use x’s value first, then increment it.

Pre- vs. Post-increment



Ch 1a



1.2. Input/Output (printf and scanf)



• To use printf and scanf, you must put this at 
the top of your .c file

• #include <stdio.h>

stdio.h



1.2.1. printf



• %c  for a character

Formatting Placeholders



char as a number



1.2.2. scanf



• Prefixing the name of a variable with 
the & operator 


• produces the location of that variable in the 
program’s memory — the memory address of 
the variable.

& Operator



• Input values may be separated by any 
amount of whitespace

• spaces, tabs, or newlines

Reading Two Values



1.3. Conditionals and Loops



• C doesn’t provide a Boolean type with true or 
false values. 


• Instead, integer values evaluate 
to true or false when used in conditional 
statements. 

• zero (0) evaluates to false

• nonzero (any positive or negative 

value) evaluates to true

1.3.1. Boolean Values in C



• equality == and inequality !=

• comparison operators

• less than <

• less than or equal <=

• greater than >

• greater than or equal >=

Relational Operators



Relational Operators



!       logical negation

&&   logical and &&

||      logical or ||


Logical Operators



while Loops

Python C



for Loops

Python C



1.4. Functions



Function Example



1.4.1 The Stack



1.5. Arrays and Strings



• A Python list can contain different types of data, and 
resizes as needed


• A C array's elements must all be the same size, and the 
size does not change 
• This leads to buffer overflow errors

Arrays v. Lists
Python C



Arrays and Functions



• Strings must end with a null byte '\0'

1.5.4 Strings and the C String Library



1.5.4 Strings and the C String Library



1.6. Structs



1.6 Structs





Ch 1b


