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Demonstration of Timing

• wget https://samsclass.info/COMSC-142/proj/
averageMat_v1.c


• gcc -o averageMat_v1 averageMat_v1.c

• head -n 15 averageMat_v1.c

• ./averageMat_v1



Demonstration of Timing

• wget https://samsclass.info/COMSC-142/proj/
averageMat_v2.c


• gcc -o averageMat_v2 averageMat_v2.c

• head -n 15 averageMat_v2.c

• ./averageMat_v2



11.1. The Memory Hierarchy



The Memory Hierarchy



Cache Levels

• Level 1 (L1)

• Sits close to the ALU


• L2

• Slower, further from the ALU


• L3

• Used to share data between cores in a multicore CPU



11.2. Storage Devices



Primary and Secondary Storage
• Primary Storage

• Can be accessed directly by the CPU

• Registers and RAM

• Examples: %rax, (%rax)


• Secondary Storage

• Cannot be accessed directly by the CPU

• Examples: Hard disk, SSD, Floppy disk, remote file 

servers, etc.

• CPU must first request the device to copy data into 

primary storage to access it



Criteria for Memory Devices
• Capacity

• Latency

• Time from a request for data to the data being retrieved


• Transfer rate

• Also called throughput

• Amount of bytes per second retrieved



11.2.1. Primary Storage



Cache
• Capacity is a few KB or MB

• Programmer doesn't explicitly load the cache

• CPU automatically loads it from RAM



11.2.2. Secondary Storage

(SSD)





11.3. Locality



Two Types of Locality
• Temporal locality

• If a program has used a variable recently, it’s likely to use 

that variable again soon.

• Spatial locality

• If a program accesses data at addresses N and N+4, it’s 

likely to access N+8 soon



Two Types of Locality
• Temporal locality

• i, len, array, and sum are accessed repeatedly

• They'll be loaded into cache memory only once 

• Spatial locality

• Many elements of array are used in sequence

• Modern systems will load a block of data into the cache 

at once

• Including several integer values

• A 16-byte block size will load 4 integers at a time



Demonstration of Timing

• The first version loads elements in order

• So a single read of RAM loads several elements at once


• The second version loads elements out of sequence

• Only loads one element per read of RAM
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11.4. Caching



11.4. CPU Caches

• When the CPU needs data, it firsts calculates the address 
of the desired data


• It then sends the address to both the cache and main 
memory, with two possible results


• Cache hit 
• The data is found in the cache

• Memory access is cancelled


• Cache miss 
• The data is not found in the  

cache

• CPU waits for main memory  

to respond



Cache Eviction

• After a cache miss

• Data from RAM is loaded into the cache


• The cache is often full

• So some resident data must be evicted 
• Requiring a write to RAM (in case it's been updated)


• There are three cache designs:

• Direct-Mapped 
• Fully Associative 
• Set Associative



11.4.1. Direct-Mapped Caches
• Cache storage is divided into cache lines 
• Each cache line is independent

• Contains two types of information:

• Cache data block or cache block 
• A block of program data from main memory

• Larger block size is best for programs with good 

spatial locality

• Typically 16-64 bytes 

• Metadata 
• Information about the contents of the cache line's 

data block

• Identifying which subset of memory the data block 

holds



Locating Cached Data



Locating Cached Data



Identifying Cache Contents
• Cache metadata answers:

• Does this cache line hold a valid subset of memory?

• Valid bit is 1 if it does 

• If so, which of the many subsets of memory that map to 
this cache line does it currently hold?

• Tag stores the higher-order bits of the address range 

stored in the cache line



Identifying Cache Contents



Retrieving Cached Data

• xx

• Offset is the lower-order bits of the requested address

• Identifies the required bytes in the cache block



Memory Address Division

• xx



Direct-Mapped Read Example
• Consider a CPU 

with the following 
characteristics:

• 16-bit memory 

addresses

• a direct-mapped 

cache with 128 
cache lines


• 32-byte cache 
data blocks.



First Read: Cache Miss

• xx



Next Read: Cache Hit

• xx



Next Read: Cache Miss

• xx



Next Read: Cache Miss

• xx



Writing to Cached Data
• Two strategies.

• Write-through cache 
• Modifiy the value in the cache and simultaneously 

update the contents of main memory

• Write-back cache

• Modify the value stored in the cache’s data block, but 

don't update main memory

• After updating the cache’s data, the cache’s contents 

differ from the corresponding data in main memory

• Store a dirty bit as additional metadata



Dirty Bit

• Write-back caches are more complex than write-through 
caches


• But they reduce the cost of repeated writes to the same 
location in memory



Direct-Mapped Write Examples (Write-Back)

• xx



Direct-Mapped Write Examples (Write-Back)

• xx



11.4.2. Cache Misses and Associative Designs

• What causes cache misses?

• Compulsory misses or cold-start misses 
• Program has never accessed a memory location (or 

any location near it

• Capacity misses 
• Program uses more memory than fits in the cache, it 

can’t possibly find all of the data it wants in the cache, 
leading to misses


• Conflict misses 
• Two frequently used variables map to the same cache 

location

• Each access to one of those variables evicts the other 

from the cache as they compete for the same cache 
line



Associative Cache Types

• Fully Associative 
• Allows any memory region to occupy any cache location

• Maximum flexibility, but highest lookup and eviction 

complexity

• Every location needs to be simultaneously considered 

during any operation

• Valuable in some small, specialized applications (for 

example, translation look-aside buffers), their high 
complexity makes them generally unfit for a general-
purpose CPU cache



Associative Cache Types

• Set Associative 
• Middle ground between direct-mapped and fully 

associative designs

• Well suited for general-purpose CPUs

• Every memory region maps to exactly one cache set, but 

each set stores multiple cache lines

• The number of lines allowed in a set is a fixed dimension 

of a cache, and set associative caches typically store two 
to eight lines per set



11.4.3. Set Associative Caches
• Cache simultaneously checks every line in the set



Cache Replacement Policy
• When loading a value into a cache

• (and when evicting data already resident in the cache)


• The cache must decide which of the line options to use

• It uses the LRU (Least Recently Used) line



Set Associative Cache Examples

• xx



• xx

Set Associative Cache Examples



• xx

Set Associative Cache Examples



• xx

Set Associative Cache Examples



• xx

Set Associative Cache Examples



• xx

Set Associative Cache Examples



• xx

Set Associative Cache Examples



• xx

Set Associative Cache Examples



11.5. Cache Analysis and Valgrind



Simplifying the Test Programs
• Shrink the previous two programs to 1000x1000

• wget https://samsclass.info/COMSC-142/proj/matrix1.c

• gcc -o matrix1 matrix1.c

• wget https://samsclass.info/COMSC-142/proj/matrix2.c

• gcc -o matrix2 matrix2.c

• ./matrix1

• ./matrix2



Using Valgrind
• valgrind --tool=cachegrind --cache-sim=yes ./matrix1

• valgrind --tool=cachegrind --cache-sim=yes ./matrix2



11.6. Looking Ahead: Caching on 
Multicore Processors



xx

• xx



11.6.1. Cache Coherency
• Two or more cores might have cached the same data in L1

• And have different values for the same block of memory


• Multicore processors implement a cache-coherence 
protocol

• Ensures that any core accessing a memory location

• Sees the most recently modified value of that memory 

location 

• Rather than seeing an older (stale) copy of the value that 

may be stored in its L1 cache

• We'll describe MSI, one of the many cache-coherence 

protocols



11.6.2. The MSI Protocol
• MSI (Modified, Shared, Invalid)

• Adds three flags (or bits) to each cache line

• M set: the block has been modified 
• This core has written to its copy of the cached value


• S set: the block is unmodified and can be safely shared

• Multiple L1 caches may safely store a copy of the 

block and read from their copy

• I set: the cached block is invalid or contains stale data

• Is an older copy of the data that does not reflect the 

current value of the block of memory



MSI: Read

• If another core's L1 stores a new value


• Stores with the M flag set


• It must first write to the L2 cache


• Then write-back to its L1 cache, clearing the M bit


• Sets the S bit to indicate that the block in this cache line is in a 
state that can be safely cached by other cores


• The core that initiated the read access on an line with the I flag set 
can then load the new value of the block into its cache line. 



MSI: Write
• If the block is in the M state, write to the cached copy of the 

block

• No changes to the flags are needed (the block remains in the 

M state)

• If the block is in the I or the S state, notify other cores that the 

block is being written to (modified)

• Other L1 caches that have the block stored in the S state, 

need to clear the S bit and set the I bit on their block (their 
copies of the block are now out of date with the copy that is 
being written to by the other core)


• If another L1 cache has the block in the M state, it will write its 
block back to the lower level, and set its copy to I


• The core writing will then load the new value of the block into 
its L1 cache, set the M flag (its copy will be modified by the 
write), and clear the I flags (its copy is now valid), and write to 
the cached block



11.6.3. Implementing Cache Coherency Protocols

• A snooping L1 cache controller listens (or snoops) on the 
bus for reads or writes to blocks that it caches


• MSI and other similar protocols such as MESI and MOESI 
are write-invalidate protocols; that is, protocols that 
invalidate copies of cached entries on writes


• Snooping can also be used by write-update cache 
coherency protocols, where the new value of a data is 
snooped from the bus and applied to update all copies 
stored in other L1 caches



11.6.4. More about Multicore Caching

• The benefits to performance

• Of each core of a multicore processor having its own L1 

cache

• Is worth the added extra complexity of the cache 

coherency protocol

• There is another problem: false sharing 
• If multiple threads of a single multithreaded parallel 

program are running simultaneously across the multiple 
cores


• And are accessing memory locations that are near to 
those accessed by other threads


• In section Chapter 14.5, we discuss the false sharing 
problem and some solutions to it
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