11. Storage and the Memory Hierarchy

For COMSC 142

Sam Bowne Jan 30, 2025

Free online textbook

#{ Dive into Systems :: Div

@ diveintosystems.org/book/index.html

Dive Into Systems

f

Dive into Systems

Contents
Authors

Book Version

Authors

Suzanne J. Matthews, Ph.D. — West Point
suzanne.matthews@westpoint.edu

Tia Newhall, Ph.D. — Swarthmore College
newhall@cs.swarthmore.edu

Kevin C. Webb, Ph.D. — Swarthmore College
kwebb@cs.swarthmore.edu

 https://diveintosystems.org/book/index.html

Topics

11.1. The Memory Hierarchy
11.2. Storage Devices

11.3. Locality

11.4. Caching

1.5. Cache Analysis and Cachegrind

1.6. Looking Ahead: Caching on Multicore Processors

Demonstration of Timing

wget https://samsclass.info/COMSC-142/proj/

averageMat_v1.c

gcc -0 averageMat_v1 averageMat_v1.c

head -n 15 averageMat_v1.c
./averageMat_v1

o N sambowne — debian@debian: ~/[COMSC-142/test — ssh debian

debian@Pdebian: $ head -n 15 avera
#include <stdlib.h>
#include <time.h>

#include <stdio.h>

#define N 30000

float averageMat_vi(int s**mat, int n) {
int 1, j, total = 0;

for (1 = 0; 1 < n; i++) {
for (3 = 0; 7 < n; j++) {
// Note indexing: [1]1[j]
total += mat[i][j];
}
}
debian®Pdebian:
Elapsed time: 2.422150

debian@®debian:

$./averageMat_vi

s B

Demonstration of Timing

wget https://samsclass.info/COMSC-142/proj/

averageMat_v2.c

gcc -0 averageMat_v2 averageMat_v2.c

head -n 15 averageMat_v2.c
./averageMat_v2

ol sambowne — debian@debian: ~[COMSC-142/test — ssh debia
$ head -n 15 averas

([debian®Pdebian:
#include <stdlib.h>
#include <time.h>

#include <stdio.h>

#define N 30000

float averageMat_v2(int **mat, int n) {
int 1, j, total = 0;

for (i = 0; 1 < n; i++) {
for (j = 0; J < n; j++) {
// Note indexing: [j1[i]
total += mat[jl[i];
}
}
[debianPdebian:
Elapsed time: 10.585279
debian@debian: $ B

$./averageMat_v2

11.1. The Memory Hierarchy

The Memory Hierarchy

1 cycle

Registers On CPU

/ oA \“‘10 cycles
Faster Access, -
Higher Cost ~

Main Memory 100 cycles

Slower Access,
Lower Cost

~1 M cycles
Flash Disk

~10 M cycles
Traditional Disk

| / Remote Secondary Storage (e.g., Internet) \

The Memory Hierarchy

Storage Capacity

I\

Primary
Storage

Secondary
Storage

Cache Levels

e Level 1 (L1)

e Sits close to the ALU
o L2

* Slower, further from the ALU
e L3

 Used to share data between cores in a multicore CPU

11.2. Storage Devices

Primary and Secondary Storage

* Primary Storage
e Can be accessed directly by the CPU
* Registers and RAM
 Examples: %rax, (%orax)
 Secondary Storage
 Cannot be accessed directly by the CPU

 Examples: Hard disk, SSD, Floppy disk, remote file
servers, etc.

 CPU must first request the device to copy data into
primary storage to access it

Criteria for Memory Devices

« Capacity
* Latency

* Time from a request for data to the data being retrieved
* Transfer rate

* Also called throughput

 Amount of bytes per second retrieved

11.2.1. Primary Storage

Table 1. Primary Storage Device Characteristics of a Typical 2020 Workstation
Device Capacity Approx. latency RAM type
Register 4 - 8 bytes <1ns SRAM
CPU cache 1 - 32 megabytes S5ns SRAM
Main memory 4 - 64 gigabytes 100 ns DRAM

CPU Memory Module Slots

Memory Bus

Cache

* Capacity is a few KB or MB

 Programmer doesn't explicitly load the cache
 CPU automatically loads it from RAM

sambowne — debian@debian: ~[COMSC-142/test — ssh debian@172.16.123.130 — 85x7

([debian@®Pdebian:

NAME ONE-SIZE
L1d 32K
L11 32K
L2 256K
L3 12M

64K
64K
512K
24M

debian®debian:

: $ lscpu -C
ALL-SIZE WAYS TYPE LEVEL SETS PHY-LINE COHERENCY-SIZE
8 Data 1 64 64

8 Instruction 1 64 64
4 Unified 2 1024 64
16 Unified 3 12288 64

$ B

11.2.2. Secondary Storage

Device

Flash disk
(SSD)

Traditional hard
disk

Remote network
server

Capacity

0.5 - 2 terabytes

0.5-10 terabytes

Varies considerably

Latency

0.1-1ms

5-10ms

20-200 ms

Transfer rate

200 - 3,000
megabytes /
second

100 - 200
megabytes /
second

Varies considerably

CPU Memory Module Slots

Memory Bus

|/O Bus (e.g., PCl Express)

11.3. Locality

Two Types of Locality

* Temporal locality

* |If a program has used a variable recently, it’s likely to use
that variable again soon.

e Spatial locality

e |If a program accesses data at addresses N and N+4, it’s
likely to access N+8 soon

int sum_array(int *array, int len) {
int 1i;
int sum = 0;

for (i = 0; 1 < len; i++) {

sum += array[i];

}

return sum;

Two Types of Locality

* Temporal locality
* I, len, array, and sum are accessed repeatedly
 They'll be loaded into cache memory only once
* Spatial locality
* Many elements of array are used in sequence

* Modern systems will load a block of data into the cache
at once

* Including several integer values
* A 16-byte block size will load 4 integers at a time

for (i = 0; 1 < len; i++) {
sum += array[i];

}

Demonstration of Timing

e The first version loads elements in order

* So a single read of RAM loads several elements at once

 The second version loads elements out of sequence

* Only loads one element per read of RAM

for (1 =0; 1 < n; i++) {
for (j = 0; 7 < n; j++) {
// Note indexing: [1][j]
total += mat[i][j];

}
}

debian®debian:

Elapsed time: 2.422150

debian®debian:

for (1 = 9; 1 < n; i++) {
for (j = 0; 7 < n; j++) {
// Note indexing: [j1[1i]
total += mat[jl[i];
}
}

([debian®debian: $./ave

Elapsed time: 10.585279
debian@debian: $ B

11.4. Caching

11.4. CPU Caches

 When the CPU needs data, it firsts calculates the address
of the desired data

* |t then sends the address to both the cache and main
memory, with two possible results

e Cache hit —
 The data is found in the cache
- L cycle On CPU
« Memory access is cancelled Registers
* Cache miss / Caches \'”10 cycles

* The data is not found in the / Main Memory \100 cycles
cache / \

 CPU waits for main memory
to respond

Cache Eviction

* After a cache miss

e Data from RAM is loaded into the cache
* The cache is often full

* S0 some resident data must be evicted

* Requiring a write to RAM (in case it's been updated)

* There are three cache designs.:

* Direct-Mapped

* Fully Associative

* Set Associative

11.4.1. Direct-Mapped Caches

* Cache storage is divided into cache lines
 Each cache line is independent
» Contains two types of information:
» Cache data block or cache block
* A block of program data from main memory

* |Larger block size is best for programs with good
spatial locality

* Jypically 16-64 bytes
e Metadata

e |Information about the contents of the cache line's
data block

 |dentifying which subset of memory the data block
holds

Locating Cached Data

Main Memory

Address

0x0000

0x0020

0x0040 Direct-Mapped Cache
0x0060 \\\ Line Cache Data Block
0x0080 \\><t‘ 0

0x00AO0 |

Ox00CO % 2

OxO0EO / > 3

0x0100 //

0x0120

0x0140

o e of e o

Locating Cached Data

Requested Memory Address Direct-Mapped Cache
Index Line Cache Data Block

0

1

2

> 3

The index portion of an address 4
identifies which cache line the 5
address maps to. .

Figure 2. The middle index portion of a memory address identifies a cache line.

Identifying Cache Contents

« Cache metadata answers:
* Does this cache line hold a valid subset of memory?
 Valid bitis 1 if it does

* If so, which of the many subsets of memory that map to
this cache line does it currently hold?

* Tag stores the higher-order bits of the address range
stored in the cache line

Identifying Cache Contents

Requested Memory Address Direct-Mapped Cache
Tag Index Line V Tag Cache Data Block

3|11 |01110010...

Output control signal to
N indicate miss (0) or hit (1).

Figure 3. After using the requested memory address’s index bits to locate the proper cache line,
the cache simultaneously verifies the line's valid bit and checks its tag against the requested
address’s tag. If the line is valid with a matching tag, the lookup succeeds as a hit.

Retrieving Cached Data

* Offset is the lower-order bits of the requested address

 |dentifies the required bytes in the cache block

Requested Memory Address

Tag

Index

Offset

Line V

Tag

Direct-Mapped Cache
Cache Data Block

01110010...

On a hit, the offset portion
of the address identifies
which bytes of the cache
data block to retrieve.

©

)

Memory Address Division

Requested Memory Address

Tag Index
(i bits)

Offset
(f bits)

i index bits can uniquely
identify 2’ cache lines.

Figure 5. The index portion of an address uniquely identifies a cache line, and the offset portion
uniquely identifies a position in the line’s data block.

L 4

Line

G 0 A W N - O

Tag

Direct-Mapped Cache
Cache Data Block

21

22 . 4 3 2 1

1
|

f offset bits can uniquely
identify 2/ cache data
block bytes.

Direct-Mapped Read Example

e Consider a CPU Direct-Mapped Cache
with the f(?”(?WIﬂQ Line V Tag Cache Data Block (32 bytes)
characteristics: oo
* 16-bit memory 1{0

addresses > 1o
* a direct-mapped 310
cache with 128 410
cache lines
e 32-byte cache 127 | 0
data blocks.
Figure 6. An empty direct-mapped example cache

First Read: Cache Miss

Read from address 1010000001100100:

Tag Index Offset
1010 0000011 00100

Direct-Mapped Cache
Line V Tag Cache Data Block (32 bytes)

»3|1| 1010 {3| Load data from Memory

Result: miss, the line was
invalid prior to this access.

Figure 7. Read from address 10700000017001700. Index 0000011 (line 3) is invalid, so the request
misses and the cache loads data from main memory.

Next Read: Cache Hit

Read from address 1010000001100111;

Tag

Index

Offset

1010

0000011

00111

Line V

Direct-Mapped Cache

Tag

Cache Data Block (32 bytes)

Result: hit, the line is valid,
and the tag matches.

1010

Figure 8. Read from address 107000000717100111. Index 0000011 (line 3) is valid, and the tag
(1070) matches, so the request hits. The cache yields data beginning at byte 7 (offset 0b00111)
of its data block.

Next Read: Cache Miss

Read from address 1001000000100000:

Tag Index Offset
1001 0000001 00000

Direct-Mapped Cache
Line V Tag Cache Data Block (32 bytes)

1001 {3 | Load data from Memory

L
(Y
(SR

Result: miss, the line was
invalid prior to this access.

Figure 9. Read from address 1007000000700000. Index 0000001 (line 1) is invalid, so the request
misses and the cache loads data from main memory.

Next Read: Cache Miss

Read from address 1111000001100101:

Tag

Index

Offset

1111

0000011

00101

Line V

Direct-Mapped Cache
Tag Cache Data Block (32 bytes)

Result: miss, the line is valid,
but the tag doesn't match.

1111 {3| Load data from Memory

Figure 10. Read from address 11110000071700101. Index 0000011 (line 3) is valid, but the tag
doesnt match, so the request misses and the cache loads data from main memory.

Writing to Cached Data

* [wo strategies.
* Write-through cache

* Modifiy the value in the cache and simultaneously
update the contents of main memory

 Write-back cache

* Modify the value stored in the cache’s data block, but
don't update main memory

e After updating the cache’s data, the cache’s contents
differ from the corresponding data in main memory

e Store a dirty bit as additional metadata

Dirty Bit

Dirty: a one-bit flag that indicates whether the data
stored in a cache line has been modified. When set, the

data in the cache line is out of sync with main memory —\l Direct-Mapped Cache
and must be written back to memory before eviction.
Y Line V D Tag Cache Data Block

Figure 11. Cache extended with a dirty bit

* Write-back caches are more complex than write-through
caches

e But they reduce the cost of repeated writes to the same
location in memory

Direct-Mapped Write Examples (Write-Back)

Write to address 1111000001100000:

Tag

Index

Offset

1111

0000011

00000

Line V D

Tag

Direct-Mapped Cache
Cache Data Block (32 bytes)

Result: hit, the line is valid,

and the tag matches.

Set dirty bit to 1 on write.

1111

Figure 12. Write to address 1111000007700000. Index 0000011 (line 3) is valid, and the tag
(1111) matches, so the request hits. Because this access is a write, the cache sets the line’s dirty

bit to 1.

Direct-Mapped Write Examples (Write-Back)

Write to address 1010000001100100:

Tag Index Offset
1010 0000011 00100

Direct-Mapped Cache
Line V D Tag Cache Data Block (32 bytes)

Save data to Memory —>
Load data from Memory

*311(1(1010 7

~N

Result: miss, the line is valid, but
the tag doesn't match.

Save cache data block to memory
before evicting it.

Set dirty bit to 1 on write. (again)

Figure 13. Write to address 1070000001700100. Index 0000011 (line 3) is valid, but the tag
doesn’t match, so the request misses. Because the target line is both valid and dirty, the cache
must save the existing data block to main memory before loading the new one. This access is a
write, so the cache sets the newly loaded line’s dirty bit to 1.

11.4.2. Cache Misses and Associative Designs

 What causes cache misses?
« Compulsory misses or cold-start misses

 Program has never accessed a memory location (or
any location near it

 Capacity misses

* Program uses more memory than fits in the cache, it
can’t possibly find all of the data it wants in the cache,
leading to misses

e Conflict misses

* Two frequently used variables map to the same cache
location

 Each access to one of those variables evicts the other
from the cache as they compete for the same cache
line

Associative Cache Types

* Fully Associative
e Allows any memory region to occupy any cache location

 Maximum flexibility, but highest lookup and eviction
complexity

* Every location needs to be simultaneously considered
during any operation

* Valuable in some small, specialized applications (for
example, translation look-aside buffers), their high
complexity makes them generally unfit for a general-
purpose CPU cache

Associative Cache Types

 Set Associative

 Middle ground between direct-mapped and fully
associative designs

* Well suited for general-purpose CPUs

 Every memory region maps to exactly one cache set, but
each set stores multiple cache lines

 The number of lines allowed in a set is a fixed dimension
of a cache, and set associative caches typically store two
to eight lines per set

11.4.3. Set Associative Caches

e Cache simultaneously checks every line in the set

Requested Memory Address

Tag

Index Offset

Two-Way Set Associative Cache

Line,

Line,

Vo

Do

Tag,

Cache Data Block, | V, D,

Tag,

Cache Data Block,

)

D-

r/

Line, output:

*| miss (0) or hit (1).

Line, output:
miss (0) or hit (1).

Figure 14. Valid bit verification and tag matching in a two-way set associative cache

Cache Replacement Policy

 When loading a value into a cache

* (and when evicting data already resident in the cache)

 The cache must decide which of the line options to use

* |t uses the LRU (Least Recently Used) line

LRU: a one-bit flag that indicates
whether the leftmost line, of the set
was least recently used (LRU = 0) or
the rightmost line, of the set was
least recently used (LRU = 1).

~

Set LRU

Two-Way Set Associative Cache

Line,

Line,

Vo Dy

Tag,

Cache Data Block,

Vi Dy

Tag,

Cache Data Block,

0

1
2
3

Figure 15. A two-way set associative cache in which each set stores one bit of LRU metadata to

inform eviction decisions

Set Associative Cache Examples

Consider a CPU with the following characteristics:

e 16-bit memory addresses.

« Atwo-way set associative cache with 64 sets. Note that making a cache two-
way set associative doubles its storage capacity (two lines per set), so this
example halves the number of sets so that it stores the same number of lines

as the earlier direct-mapped example.

e 32-byte cache blocks.

« An LRU cache replacement policy that indicates whether the leftmost line of
the set was least recently used (LRU = 0) or the rightmost line of the set was
least recently used (LRU = 1).

Set Associative Cache Examples

Two-Way Set Associative Cache

Line, Line,
Set LRU |V, D, Tag, CacheDataBlock, |V, D, Tag, Cache Data Block,
0| O OO 0O
1(O 0|0 0|0
2|1 0 OO OO0
3] O OO OO0
41 0 0|0 0|0
63| O I OO I 0O

Figure 16. An empty two-way set associative example cache

Set Associative Cache Examples

Read from address 1010000001100100:

Update LRU bit to 1.

Tag Index Offset
10100 000011 00100 Two-Way Set Associative Cache
Line, Line,
Set LRU |V, D, Tag, CacheDataBlock, |V, D, Tag, Cache Data Block,
0
1
2
»3| 1 | 1| 0 | 10100 afs ofo
Result: miss, both lines in 4 Load Data
set 3 are invalid prior to
the access. '
63 |

Figure 17. Read from address 101000000711001700. Both lines at index 0000117 (set 3)
are invalid, so the request misses, and the cache loads data from main memory. The
set’s LRU bit is 0, so the cache loads data into the left line and updates the LRU bit to

1.

Set Associative Cache Examples

Read from address 1010000001100111:

Tag Index Offset
10100 000011 00111
Set
0
1
2
»3
Result: hit, one line in the 4
set is valid and holds a
matching tag.
63

Two-Way Set Associative Cache

Line, Line,

LRU |V, D, Tag, CacheDataBlock, |V, D, Tag, Cache DataBlock,

1 1| 0 | 10100 0|0

Figure 18. Read from address 10700000071100111. The left line at index 000011 (set
3) holds a matching tag, so the request hits.

Set Associative Cache Examples

Read from address 1001000000100000:

Update LRU bit to 1.

Tag Index Offset
10010 000001 00000
Set
0
»1
2
3
Result: miss, both lines in 4
set 1 are invalid prior to
the access.
63

Two-Way Set Associative Cache

Line, Line,

LRU |V, D, Tag, CacheDataBlock, |V; D, Tag, Cache Data Block,
1 | 1| 0 | 10010 s 0|0
Load Data

Figure 19. Read from address 1007000000700000. Both lines at index 0000017 (set 1)
are invalid, so the request misses, and the cache loads data from main memory. The
set’s LRU bit is 0, so the cache loads data into the left line and updates the LRU bit to

1.

Set Associative Cache Examples

Read from address 1111000001100101:

Update LRU bit to 0.

Tag Index Offset
11110 000011 00101 Two-Way Set Associative Cache
Line, Line,

Set LRU |V, D, Tag, CacheDataBlock, |V, D, Tag, Cache Data Block,

0

1

2

»3| 0o | 1| 010100 1| 0| 11110 afs
Result: miss, one line's tag 4 Load Data
doesn't match, and the
other is invalid. ’

63 |

Figure 20. Read from address 1111000007171001701. At index 000011 (set 3), one line’s
tag doesn’t match, and the other line is invalid, so the request misses. The set's LRU
bit is 1, so the cache loads data into the right line and updates the LRU bit to 0.

Set Associative Cache Examples

Write to address 1111000001100000:

Tag Index Offset
11110 000011 00000 Two-Way Set Associative Cache
Line, Line,
Set LRU |V, D, Tag, CacheDataBlock, |V, D, Tag, Cache Data Block,
0
1
2
*3| 0 1| 0 | 10100 1|1 |11110
Result: hit, one of the valid 4
lines holds a matching tag.
Set line,'s dirty bit. 63 I I

Figure 21. Write to address 11110000071700000. The right line at index 000011 (set 3)
is valid and holds a matching tag, so the request hits. Because this access is a write,
the cache sets the line’s dirty bit to 1. The LRU bit remains 0 to indicate that the left
line remains least recently used.

Set Associative Cache Examples

Write to address 1010000001100100:

Tag Index Offset
10100 000011 00100 Two-Way Set Associative Cache
Line, Line,
Set LRU |V, D, Tag, CacheDataBlock, |V, D, Tag, Cache Data Block,
0
1
2
*3 1 1| 1 | 10100 1| 1]/11110
Result: hit, one of the valid 4
lines holds a matching tag.
Set line,'s dirty bit. 63 I I
Update LRU bit to 1.

Figure 22. Write to address 10700000071700100. The left line at index 000011 (set 3)
is valid and holds a matching tag, so the request hits. Because this access is a write,
the cache sets the line’s dirty bit to 1. After accessing the left line, the cache sets the
line’s LRU bit to 1.

11.5. Cache Analysis and Valgrind

Simplifying the Test Programs

e Shrink the previous two programs to 1000x1000

e wget https://samsclass.info/COMSC-142/proj/matrix1.c
e gcc -0 matrix1 matrix1.c

e wget https://samsclass.info/COMSC-142/proj/matrix2.c
e gcc -0 matrix2 matrix2.c

e ./matrixi

e /matrix2

ol sambowne — debian@debian: ~[COMSC-142/test — ssh debian...

debian@®debian: $./matrixi =
Elapsed time: 0.002524

debian®debian: $./matrix2
Elapsed time: 0.004674
debian®debian: 3 I

Using Valgrind

 valgrind --tool=cachegrind --cache-sim=yes ./matrix

e valgrind --tool=cachegrind --cache-sim=yes ./matrix2

(o N sambowne — debian@debian: ~/JCOMS

[debian@debian: $ valgrind
==5586== Cachegrind, a cache and branch-
==5586== Copyright (C) 2002-2017, and GN
==5586== Using Valgrind-3.19.8 and LibVEX
==5586== Command: ./matrixl

—-5586—— warning: L3 cache found, using 1
—-5586—— warning: specified LL cache: lin
—-5586—— warning: simulated LL cache: lin
Elapsed time: 0.040995

==5586== 1 refs: 16,303,102
==55686== I1 misses: 1,342
==5586== LL1 misses: 1,320
==5586== I1 miss rate: 0.01%
==5586== LL1 miss rate: 9.01%
==55686=—= D refs: 9,102,328
==5586== D1 misses: (
==5586== misses: 64,222 (
==5586== D1 miss rate: 0.7% (
==5586== miss rate: 0.7% (

==5588=—=
==5588=—=
==5588==
==5588==
==5588==
—5588—
——5588—
——-5588—

sambowne — debian@debian: ~/COM{

[debian@debian: $ valgrind

Cachegrind, a cache and branch-

Copyright (C) 2002-2817, and GN

Using Valgrind-3.19.0 and LibVEX
Command: ./matrix2

warning: L3 cache found, using 1
warning: specified LL cache: lin
warning: simulated LL cache: lin

Elapsed time: 0.061840

==5588==
==5588==
==5588==
==5588=—=
==5588=—=
==5588==
==5588==
==5588==
==5588==
==5588=—=
==5588=—=
==5588==

refs: 16,303,112
I1 misses: 1,342
LL1 misses: 1,320
I1 miss rate: 0.01%
LL1 miss rate: 0.01%

D refs: 9,102,331 (9,0
D1 misses: (1,1
misses: 64,222 (
miss rate: 12.4% (
miss rate: 0.7% (

11.6. Looking Ahead: Caching on
Multicore Processors

Multicore Processor

L2 cache

‘ Memory Bus

Main Memory (RAM)

-]

Figure 1. An example memory hierarchy on a multicore processor. Each of the four cores has its own
private L1 cache, and all four cores share a single L2 cache that they access through a shared bus.
The multicore processor connects to RAM via the memory bus.

11.6.1. Cache Coherency

* Two or more cores might have cached the same data in L1
* And have different values for the same block of memory

* Multicore processors implement a cache-coherence
protocol

* Ensures that any core accessing a memory location

e Sees the most recently modified value of that memory
location

* Rather than seeing an older (stale) copy of the value that
may be stored in its L1 cache

 We'll describe MSI, one of the many cache-coherence
protocols

11.6.2. The MSI Protocol

 MSI (Modified, Shared, Invalid)
* Adds three flags (or bits) to each cache line
* M set: the block has been modified
* This core has written to its copy of the cached value
e S set: the block is unmodified and can be safely shared

 Multiple L1 caches may safely store a copy of the
block and read from their copy

e | set: the cached block is invalid or contains stale data

* |s an older copy of the data that does not reflect the
current value of the block of memory

MSI: Read

On aread access:

« |f the cache block is inthe M or S state, the cached value is used to satisfy
the read (its copy’s value is the most current value of the block of memory).

« |f the cache block is in the | state, the cached copy is out of date with a newer

version of the block, and the block’s new value needs to be loaded into the

cache line before the read can be satisfied.

If another core's L1 stores a new value

Stores with the M flag set
It must first write to the L2 cache
Then write-back to its L1 cache, clearing the M bit

Sets the S bit to indicate that the block in this cache line is in a
state that can be safely cached by other cores

The core that initiated the read access on an line with the | flag set
can then load the new value of the block into its cache line.

MSI: Write

 |If the block is in the M state, write to the cached copy of the
block

 No changes to the flags are needed (the block remains in the
M state)

 If the block is in the | or the S state, notify other cores that the
block is being written to (modified)

* Other L1 caches that have the block stored in the S state,
need to clear the S bit and set the | bit on their block (their
copies of the block are now out of date with the copy that is
being written to by the other core)

e |f another L1 cache has the block in the M state, it will write its
block back to the lower level, and set its copy to |

* The core writing will then load the new value of the block into
its L1 cache, set the M flag (its copy will be modified by the
write), and clear the | flags (its copy is now valid), and write to
the cached block

11.6.3. Implementing Cache Coherency Protocols

* A snooping L1 cache controller listens (or snoops) on the
bus for reads or writes to blocks that it caches

 MSI and other similar protocols such as MESI and MOESI
are write-invalidate protocoils; that is, protocols that
iInvalidate copies of cached entries on writes

e Snooping can also be used by write-update cache
coherency protocols, where the new value of a data is
snooped from the bus and applied to update all copies
stored in other L1 caches

11.6.4. More about Multicore Caching

* The benefits to performance

* Of each core of a multicore processor having its own L1
cache

* |s worth the added extra complexity of the cache
coherency protocol

* There is another problem: false sharing

* |If multiple threads of a single multithreaded parallel

program are running simultaneously across the multiple
cores

* And are accessing memory locations that are near to
those accessed by other threads

* In section Chapter 14.5, we discuss the false sharing
problem and some solutions to it

