
Sam Bowne Jan 30, 2025

11. Storage and the Memory Hierarchy

For COMSC 142

• https://diveintosystems.org/book/index.html

Free online textbook

11.1. The Memory Hierarchy

11.2. Storage Devices

11.3. Locality

11.4. Caching

11.5. Cache Analysis and Cachegrind

11.6. Looking Ahead: Caching on Multicore Processors

Topics

Demonstration of Timing

• wget https://samsclass.info/COMSC-142/proj/
averageMat_v1.c

• gcc -o averageMat_v1 averageMat_v1.c

• head -n 15 averageMat_v1.c

• ./averageMat_v1

Demonstration of Timing

• wget https://samsclass.info/COMSC-142/proj/
averageMat_v2.c

• gcc -o averageMat_v2 averageMat_v2.c

• head -n 15 averageMat_v2.c

• ./averageMat_v2

11.1. The Memory Hierarchy

The Memory Hierarchy

Cache Levels

• Level 1 (L1)

• Sits close to the ALU

• L2

• Slower, further from the ALU

• L3

• Used to share data between cores in a multicore CPU

11.2. Storage Devices

Primary and Secondary Storage
• Primary Storage

• Can be accessed directly by the CPU

• Registers and RAM

• Examples: %rax, (%rax)

• Secondary Storage

• Cannot be accessed directly by the CPU

• Examples: Hard disk, SSD, Floppy disk, remote file

servers, etc.

• CPU must first request the device to copy data into

primary storage to access it

Criteria for Memory Devices
• Capacity

• Latency

• Time from a request for data to the data being retrieved

• Transfer rate

• Also called throughput

• Amount of bytes per second retrieved

11.2.1. Primary Storage

Cache
• Capacity is a few KB or MB

• Programmer doesn't explicitly load the cache

• CPU automatically loads it from RAM

11.2.2. Secondary Storage

(SSD)

11.3. Locality

Two Types of Locality
• Temporal locality

• If a program has used a variable recently, it’s likely to use

that variable again soon.

• Spatial locality

• If a program accesses data at addresses N and N+4, it’s

likely to access N+8 soon

Two Types of Locality
• Temporal locality

• i, len, array, and sum are accessed repeatedly

• They'll be loaded into cache memory only once

• Spatial locality

• Many elements of array are used in sequence

• Modern systems will load a block of data into the cache

at once

• Including several integer values

• A 16-byte block size will load 4 integers at a time

Demonstration of Timing

• The first version loads elements in order

• So a single read of RAM loads several elements at once

• The second version loads elements out of sequence

• Only loads one element per read of RAM

Ch 11a

11.4. Caching

11.4. CPU Caches

• When the CPU needs data, it firsts calculates the address
of the desired data

• It then sends the address to both the cache and main
memory, with two possible results

• Cache hit
• The data is found in the cache

• Memory access is cancelled

• Cache miss
• The data is not found in the  

cache

• CPU waits for main memory  

to respond

Cache Eviction

• After a cache miss

• Data from RAM is loaded into the cache

• The cache is often full

• So some resident data must be evicted
• Requiring a write to RAM (in case it's been updated)

• There are three cache designs:

• Direct-Mapped
• Fully Associative
• Set Associative

11.4.1. Direct-Mapped Caches
• Cache storage is divided into cache lines
• Each cache line is independent

• Contains two types of information:

• Cache data block or cache block
• A block of program data from main memory

• Larger block size is best for programs with good

spatial locality

• Typically 16-64 bytes

• Metadata
• Information about the contents of the cache line's

data block

• Identifying which subset of memory the data block

holds

Locating Cached Data

Locating Cached Data

Identifying Cache Contents
• Cache metadata answers:

• Does this cache line hold a valid subset of memory?

• Valid bit is 1 if it does

• If so, which of the many subsets of memory that map to
this cache line does it currently hold?

• Tag stores the higher-order bits of the address range

stored in the cache line

Identifying Cache Contents

Retrieving Cached Data

• xx

• Offset is the lower-order bits of the requested address

• Identifies the required bytes in the cache block

Memory Address Division

• xx

Direct-Mapped Read Example
• Consider a CPU

with the following
characteristics:

• 16-bit memory

addresses

• a direct-mapped

cache with 128
cache lines

• 32-byte cache
data blocks.

First Read: Cache Miss

• xx

Next Read: Cache Hit

• xx

Next Read: Cache Miss

• xx

Next Read: Cache Miss

• xx

Writing to Cached Data
• Two strategies.

• Write-through cache
• Modifiy the value in the cache and simultaneously

update the contents of main memory

• Write-back cache

• Modify the value stored in the cache’s data block, but

don't update main memory

• After updating the cache’s data, the cache’s contents

differ from the corresponding data in main memory

• Store a dirty bit as additional metadata

Dirty Bit

• Write-back caches are more complex than write-through
caches

• But they reduce the cost of repeated writes to the same
location in memory

Direct-Mapped Write Examples (Write-Back)

• xx

Direct-Mapped Write Examples (Write-Back)

• xx

11.4.2. Cache Misses and Associative Designs

• What causes cache misses?

• Compulsory misses or cold-start misses
• Program has never accessed a memory location (or

any location near it

• Capacity misses
• Program uses more memory than fits in the cache, it

can’t possibly find all of the data it wants in the cache,
leading to misses

• Conflict misses
• Two frequently used variables map to the same cache

location

• Each access to one of those variables evicts the other

from the cache as they compete for the same cache
line

Associative Cache Types

• Fully Associative
• Allows any memory region to occupy any cache location

• Maximum flexibility, but highest lookup and eviction

complexity

• Every location needs to be simultaneously considered

during any operation

• Valuable in some small, specialized applications (for

example, translation look-aside buffers), their high
complexity makes them generally unfit for a general-
purpose CPU cache

Associative Cache Types

• Set Associative
• Middle ground between direct-mapped and fully

associative designs

• Well suited for general-purpose CPUs

• Every memory region maps to exactly one cache set, but

each set stores multiple cache lines

• The number of lines allowed in a set is a fixed dimension

of a cache, and set associative caches typically store two
to eight lines per set

11.4.3. Set Associative Caches
• Cache simultaneously checks every line in the set

Cache Replacement Policy
• When loading a value into a cache

• (and when evicting data already resident in the cache)

• The cache must decide which of the line options to use

• It uses the LRU (Least Recently Used) line

Set Associative Cache Examples

• xx

• xx

Set Associative Cache Examples

• xx

Set Associative Cache Examples

• xx

Set Associative Cache Examples

• xx

Set Associative Cache Examples

• xx

Set Associative Cache Examples

• xx

Set Associative Cache Examples

• xx

Set Associative Cache Examples

11.5. Cache Analysis and Valgrind

Simplifying the Test Programs
• Shrink the previous two programs to 1000x1000

• wget https://samsclass.info/COMSC-142/proj/matrix1.c

• gcc -o matrix1 matrix1.c

• wget https://samsclass.info/COMSC-142/proj/matrix2.c

• gcc -o matrix2 matrix2.c

• ./matrix1

• ./matrix2

Using Valgrind
• valgrind --tool=cachegrind --cache-sim=yes ./matrix1

• valgrind --tool=cachegrind --cache-sim=yes ./matrix2

11.6. Looking Ahead: Caching on
Multicore Processors

xx

• xx

11.6.1. Cache Coherency
• Two or more cores might have cached the same data in L1

• And have different values for the same block of memory

• Multicore processors implement a cache-coherence
protocol

• Ensures that any core accessing a memory location

• Sees the most recently modified value of that memory

location

• Rather than seeing an older (stale) copy of the value that

may be stored in its L1 cache

• We'll describe MSI, one of the many cache-coherence

protocols

11.6.2. The MSI Protocol
• MSI (Modified, Shared, Invalid)

• Adds three flags (or bits) to each cache line

• M set: the block has been modified
• This core has written to its copy of the cached value

• S set: the block is unmodified and can be safely shared

• Multiple L1 caches may safely store a copy of the

block and read from their copy

• I set: the cached block is invalid or contains stale data

• Is an older copy of the data that does not reflect the

current value of the block of memory

MSI: Read

• If another core's L1 stores a new value

• Stores with the M flag set

• It must first write to the L2 cache

• Then write-back to its L1 cache, clearing the M bit

• Sets the S bit to indicate that the block in this cache line is in a
state that can be safely cached by other cores

• The core that initiated the read access on an line with the I flag set
can then load the new value of the block into its cache line.

MSI: Write
• If the block is in the M state, write to the cached copy of the

block

• No changes to the flags are needed (the block remains in the

M state)

• If the block is in the I or the S state, notify other cores that the

block is being written to (modified)

• Other L1 caches that have the block stored in the S state,

need to clear the S bit and set the I bit on their block (their
copies of the block are now out of date with the copy that is
being written to by the other core)

• If another L1 cache has the block in the M state, it will write its
block back to the lower level, and set its copy to I

• The core writing will then load the new value of the block into
its L1 cache, set the M flag (its copy will be modified by the
write), and clear the I flags (its copy is now valid), and write to
the cached block

11.6.3. Implementing Cache Coherency Protocols

• A snooping L1 cache controller listens (or snoops) on the
bus for reads or writes to blocks that it caches

• MSI and other similar protocols such as MESI and MOESI
are write-invalidate protocols; that is, protocols that
invalidate copies of cached entries on writes

• Snooping can also be used by write-update cache
coherency protocols, where the new value of a data is
snooped from the bus and applied to update all copies
stored in other L1 caches

11.6.4. More about Multicore Caching

• The benefits to performance

• Of each core of a multicore processor having its own L1

cache

• Is worth the added extra complexity of the cache

coherency protocol

• There is another problem: false sharing
• If multiple threads of a single multithreaded parallel

program are running simultaneously across the multiple
cores

• And are accessing memory locations that are near to
those accessed by other threads

• In section Chapter 14.5, we discuss the false sharing
problem and some solutions to it

Ch 11b

