
Sam Bowne Apr 8, 2025

12. Code Optimization

For COMSC 142

• https://diveintosystems.org/book/index.html

Free online textbook

12.1. First Steps

12.2. Other Compiler Optimizations

12.3. Memory Considerations

Topics

12. Code Optimization

• gcc optimization flags

• -O1
• Basic optimizations to reduce code size and execution

time

• While attempting to keep compile time to a minimum.

• -O2
• Most optimizations that do not involve a space-

performance trade-off

• -O3
• Additional optimizations, such as function inlining

• May significantly increase compile time

What Compilers Already Do

• Constant Folding
• Constants are evaluated at compile time

• In the code below

• Macro expansion replaces

• int debug = N-5 with

• int debug = 5-5

• Constant folding then updates this statement to

• int debug = 0

What Compilers Already Do

• Constant Propagation
• Replaces variables with a constant value

• If the value is known at compile time

• In the code below, it will change

• if (debug) to

• if (0)

What Compilers Already Do

• Dead Code Elimination
• The code outlined below never executes, and is removed

What Compilers Already Do

• Simplifying expressions
• imul and idiv are slow

• Addition is faster than multiplying by two

• return 2 * total; is changed to

• return total + total;

What Compilers Cannot Always Do:  
Benefits of Learning Code Optimization
• Algorithmic Strength Reduction Is Impossible
• Compilers can't fix poor choices of data structures and

algorithms

• Like bubble sort instead of quicksort

• Compiler Optimization Flags Are Not Guaranteed to
Make Code "Optimal" (or Consistent)
• Higher optimization levels may slow code or cause errors

• Difficult to debug, because debug flag -g is incompatible

with optimization flags -O

What Compilers Cannot Always Do:  
Benefits of Learning Code Optimization
• C/C++ standard does not provide clear guidance for

resolving undefined behavior

• Consider running this code  

with a = INT_MAX
• Adding 1 causes integer overflow

• Compiling with no optimizations returns 0

• Compiling with -O3 returns 1

What Compilers Cannot Always Do:  
Benefits of Learning Code Optimization
• Pointers Can Prove Problematic
• Sometimes two pointers point to the same address

• "memory aliasing"

• The code below works as expected if the two parameters
are different

• But calling ShiftAdd(&x, &x) makes them different

• Compilers won't make this optimization

Example

• wget https://samsclass.info/COMSC-142/proj/prime.c

• gcc -o prime prime.c -lm

• gcc -O1 -o prime1 prime.c -lm

• gcc -O2 -o prime2 prime.c -lm

• gcc -O3 -o prime3 prime.c -lm

12.1. First Steps

12.1. Code Optimization First Steps: Code Profiling

• Premature optimization

• A programmer attempts to optimize based on "gut feelings"

of where performance inefficiencies occur, and not on data

• Measure performance first to identify hot spots
• Areas in the program in which the most instructions occur

• The next slide shows that for prime.c, generating primes is the
slow step

genPrimeSequence

• Calls genNextPrime len times

genNextPrime

• Calls isPrime several times

isPrime

• Loop executes many times

• Most likely the sqrt() function consumes the most CPU

12.1.1. Using Callgrind to Profile

• gcc -g -o prime prime.c -lm

• valgrind --tool=callgrind ./prime 100000

callgrind_annotate

• callgrind_annotate --auto=yes callgrind.out.7537

• Shows that sqrt() consumes the most time

• Followed by x % i

12.1.2. Loop-Invariant Code Motion

• Moves static computations that occur inside a loop

• to outside the loop without affecting the loop’s behavior

• May cause side effects
• if the function call inside the loop changes in a way the

compiler can't detect

• Such as some other global variable changing

Improved Code

fsqrt

• Optimization flags allow the compiler to replace sqrt library
function calls with the fsqrt assembly code instruction

• This is called inlining

Ch 12a

12.2. Other Compiler Optimizations

12.2. Other Compiler Optimizations:  
Loop Unrolling and Function Inlining

• It's usually best to let the compiler perform the optimization

• When the optimized code is more difficult to read and

understand

• Confusing developers is usually a bigger problem than a

small performance cost

12.2.1. Function Inlining

• Replaces calls to a function with the body of the function

• Avoids the overhead of a function call

• Makes it easier for the compiler to identify other potential

improvements, like

• constant propagation

• constant folding

• dead code elimination

12.2.1. Function Inlining

• The -finline-functions flag suggests to GCC that functions
should be inlined

• This optimization is turned on at level 3

• Programmers should generally avoid inlining functions
manually

• Inlining functions carries a high risk of significantly reducing
the readability of code, increasing the likelihood of errors,
and making it harder to update and maintain functions

12.2.2. Loop Unrolling

• Reduce the number of iterations of a loop

• By increasing the work performed in each iteration

12.2.2. Loop Unrolling

• Branch predictors attempt to guess which way a branch
will go in advance

• So that speculative execution can be performed

• This makes each loop iteration more costly

• The processor may incorrectly guess whether the loop is

ending

12.2.2. Loop Unrolling

• Manual loop unrolling led to a minimal improvement in your
textbook

• And no improvement at all on my system

• Stick to compiler flags, don't manually unroll loops

12.3. Memory Considerations

matrixVector.c

• wget https://samsclass.info/COMSC-142/proj/
matrixVector.c

matrixVector.c

12.3.1. Loop Interchange

• Switches the order of inner and outer loops in nested loops
in order to maximize cache locality

• GCC finds this difficult to do

• Does not perform it by default

• It's up to programmers to do it manually

12.3.2. Some Other Compiler Optimizations for Improving
Locality: Fission and Fusion

• Matrix filling is the next limitation

Loop Fission

• Break loops apart

• Allows multicore processors to assign different cores for

each loop

Loop Fission

• FillArrayZeroes is not needed

• Modest improvement

Massif
• Profiles how memory usage fluctuates

Massif
• Shows that 99.96 % of memory was used by  

allocateArray

12.4. Key Takeaways and Summary

• Choose Good Data Structures and Algorithms

• Use Standard Library Functions Whenever Possible

• Optimize Based on Data and Not on Feelings

• Split Complex Code into Multiple Functions

• Prioritize Code Readability

• Pay Attention to Memory Use

• Compilers Are Constantly Improving

Ch 12b

