
Sam Bowne Apr 8, 2025

13. The Operating System

For COMSC 142

• https://diveintosystems.org/book/index.html

Free online textbook

13.1. Booting and Running

13.2. Processes

13.3. Virtual Memory

13.4. Interprocess Communication

Topics

13. The Operating System

• Such as Windows or Linux

• Manages hardware

• Supports initiating programs

• Loads program into RAM

• Starts CPU running its code

• Implements multiprogramming

• More than one program can run at the same time

• OS shares resources, including CPU, among the programs

• When one program is waiting, another can proceed

• Process

• An abstraction of a running program

The Kernel

• Core OS functionality

• Managing hardware

• Managing OS abstractions exported to users

• Such as files

• Implementing interfaces to applications and devices

• Mechanisms

• Enable the hardware to run processes

• Policies

• Govern abstractions, such as deciding which process gets

CPU time next

System Calls

• A programming interface for users of the system

• Part of the kernel

• Example:

• Get time of day from the gettimeofday system call

Kernel Components

13.1. Booting and Running

13.1.1. OS Booting

• Booting
• Runs firmware (nonvolatile code)

• BIOS (Basic Input/Output System) or

• UEFI (Unified Extensible Firmware Interface)

• Loads boot block into RAM and starts it running

• That loads the rest of the OS from disk

• Discovers and initializes hardware resources

• Initializes data structures and abstractions to make the

system ready for users

13.1.2. Getting the OS to Do Something: Interrupts and Traps

Interrupts and Traps

• Interrupts that come from the hardware layer

• such as when a NIC receives data from the network,

• are called hardware interrupts, or just interrupts

• Interrupts that come from the software layer

• such as when an application makes a system call

• are called traps

• Exceptions from either layer may also interrupt the OS

• Such as disk read error, or divide by zero

Example: Write system call

Interrupt Bus

• Sends a signal from hardware to the CPU

• CPU runs handler code

User Mode and Kernel Mode
• User Mode
• Restricted access to hardware

• Cannot access OS instructions or date

• Can only access memory allocated to it by the OS

• Kernel Mode
• Can execute any instructions

• Can access any memory location

• Can access all hardware directly

Process Address Space

• The Kernel was mapped into the top of every process’s
address space

• This system was replaced in 2018 to mitigate the Meltdown
hardware exploit

13.2. Processes

Processes

• A process

• represents an instance of a program running in the system,

which includes

• the program’s binary executable code, data, and

execution context

• The context tracks the program’s execution

• maintaining its register values, stack location, and the

instruction it is currently executing

• Multiprogramming systems

• support multiple processes at the same time

Lone View

• OS isolates processes from one another

• Gives each process the illusion that it’s controlling the entire

machine

13.2.1. Multiprogramming and Context Switching

• Timesharing
• OS gives each process a time slice or quantum

• a few milliseconds of CPU time

• Processes run concurrently
• their executions overlap in time

Context Switching

• OS saves context of the currently running process

• register values (PC, stack pointers, general-purpose register,

condition codes, etc.)

• memory state

• other states like open files

• OS restores the saved context from another process

• resumes execution from the instruction where it left of

13.2.2. Process State

• Process id (PID)
• unique identifier for a process

• ps command shows PID values

• Address space information

• Execution state

• CPU register values, stack location

• Resources
• e.g., open files

• Process state
• determines its eligibility for execution on the CPU

13.2.3. Creating (and Destroying) Processes

• The fork system call

• creates a new process

• Parent process
• the process calling

fork

• Child process

• the new process it

creates

• init
• The first process

• Created at boot time

Fork Demo

• wget https://samsclass.info/COMSC-142/proj/forkdemo3.c

• gcc -o forkdemo3 forkdemo3.c

https://samsclass.info/COMSC-142/proj/forkdemo3.c

Fork’s Return Value

• fork returns 0 to the child
process and the child’s
PID value (14) to the
parent.

Fork Demo
• wget https://samsclass.info/COMSC-142/proj/forkdemo4.c

Fork Demo

Possible Order of Outputs
• Parent and child run independently

13.2.4. exec

• Overlays the calling process’s image with a new image from a
binary executable file.

execvp Demo
• wget https://samsclass.info/COMSC-142/proj/execvpdemo.c

ls

execvp Return
• The program should not return from execvp

• It should be replaced by the new executable

• With the same pid

Ch13b

13.2.5. exit and wait

• Processes can be triggered to exit by:

• Completing all of its application code

• returning from its main function leads to a process

invoking the exit system call

• Perform an invalid action

• such as dividing by zero or dereferencing a null pointer

• Receiving a signal

• from the OS or another process

• telling it to exit

• In fact, dividing by zero and NULL pointer dereferences result
in the OS sending the process SIGFPE and SIGSEGV signals
telling it to exit

Signals

• Signals are software interrupts

• SIGSEGV for null pointer dereference

• SIGKILL from a parent calls exit in a child process

• Pressing Ctrl+C sends SIGINT, which also calls exit
• After calling exit, the OS delivers a SIGCHLD signal to the

parent process

• The child becomes a zombie process

• it moves to the Exited state and can no longer run on the

CPU

• A parent process reaps its zombie child (cleans up the rest

of its state from the system) by calling the wait system call

Blocking

• If the child is still executing when the parent process calls wait
• the parent blocks until the child exits

• (the parent enters the Blocked state waiting for

the SIGCHLD signal event to happen)

• The blocking behavior of the parent can be seen if you run a

program (a.out) in the foreground of a shell — the shell program
doesn’t print out a shell prompt until a.out terminates,
indicating that the shell parent process is blocked on a call
to wait, waiting until it receives a SIGCHLD from its child
process running a.out.

Backgrounding

• If the parent implements a SIGCHLD signal handler that
contains the call to wait
• then the parent only calls wait when there is an exited child

process to reap
• and thus it doesn’t block on a wait call.

• This behavior can be seen by running a program in the
background in a shell (a.out &).

Example

13.3. Virtual Memory

Virtual Memory

• Virtual memory is an abstraction that gives each process its
own private, logical address space in which its instructions
and data are stored—lone view

• Processes cannot access the contents of one another’s
address spaces

• Some parts of a process’s virtual address space come from
the binary executable file it’s running (e.g., the text portion
contains program instructions from the a.out file)

• Other parts of a process’s virtual address space are created at
runtime (e.g., the stack)

Two Processes

• From the same executable file

• Each instance of the variable x is independent

13.3.1. Memory Addresses

• Virtual
addresses

• locations in a

process’s
virtual address
space

• Physical
addresses

• locations in

physical
memory (RAM)

Virtual Addresses

13.3.2. Virtual Address to Physical Address Translation

• Memory Management Unit (MMU) is the part of the
computer hardware that implements address translation

• When the CPU needs to fetch data from physical memory,
the virtual address is first translated by the MMU to a
physical addresses that is used to address RAM.

13.3.3. Paging

• The OS divides the
virtual address space
of each process into
fixed-sized chunks
called pages

• Typically 4 KB

• Physical memory is
similarly divided by the
OS into page-sized
chunks called frames

Virtual and Physical Addresses in Paged Systems

• Paged virtual memory systems divide the bits of a virtual
address into two parts:

• high-order bits specify the page number on which the

virtual address is stored

• low-order bits correspond to the byte offset within the page

• Physical addresses are also divided:

• high-order bits specify the frame number
• low-order bits specify the byte offset within the frame

Page Tables for Virtual-to-Physical Page Mapping

• The OS keeps a per-
process page table

• Stores the process’s
virtual page number
to physical frame
number mappings

Page Table Entries

• For each page of virtual memory, the page table stores
one page table entry (PTE)

• contains the frame number of physical memory (RAM)

storing the virtual page.

• may also contain other info, such as a valid bit

Page Table Base Register (PTBR)

• RAM address of the running process’s page table

13.3.4. Memory Efficiency

• Processes tend to access pages of their memory space with a
high degree of temporal or spatial locality

• RAM as a cache for disk:

• OS allows processes to run only having some of their virtual

memory pages in RAM

• Their other virtual memory pages remain on secondary

storage devices, such as disk

• OS only brings them into RAM when the process accesses

addresses on these pages

Page Fault

• A process tries to access a page that is currently not stored in
RAM

• OS finds a free frame of RAM and loads the page into it

• A page replacement policy
• used when free RAM is exhausted in the system

• for example, an OS might implement the least recently

used (LRU) policy

• which replaces the page stored in the frame of RAM that has

been accessed least recently

Making Page Accesses Faster

• In a paged virtual memory system

• every load and store to a virtual memory address

requires two RAM accesses

• Read the page table entry to get the frame number for

virtual-to-physical address translation

• Read or write the byte(s) at the physical RAM address

• twice as slow as in a system that supports direct physical
RAM addressing

• Translation Look-aside Buffer (TLB) is a hardware cache that
stores (page number, frame number) mappings

Translation Look-aside Buffer

13.4. Interprocess Communication

Three Methods

• Signals

• very restricted form of interprocess communication

• one process can send a signal to another process to notify it

of some event

• Message passing
• a process exchanges messages with another process

• Shared memory
• a process shares all or part of its virtual address space with

other processes

13.4.1. Signals

• Signals are similar to hardware interrupts and traps
• but are different from both.

• Trap is a synchronous software interrupt

• occurs when a process explicitly invokes a system call

• Signals are asynchronous 

• a process may be interrupted by the receipt of a signal at

any point in its execution

• Signals also differ from asynchronous hardware interrupts in

that they are triggered by software rather than hardware
devices

Signals

Default Actions

• When a process receives a signal, one of several default
actions can occur:

• the process can terminate

• the signal can be ignored

• the process can be blocked

• the process can be unblocked

• Application programmers, however, can change the default
action of most signals and can write their own signal handler
code

Signal Handlers

13.4.2. Message Passing

• pipe is a one-way communication channel for two processes
running on the same machine

• Example: cat foo.c | grep factorial

Sockets

• A socket is a two-way communication channel

• message passing is the only way in which processes on

different computers can communicate

13.4.3. Shared 
 Memory
• Entries in the page

tables of two or
more processes to
map to the same
physical frames

Ch13b

