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13. The Operating System

e Such as Windows or Linux User/Program

 Manages hardware Operating System

» Supports initiating programs (special system software)

Computer Hardware:

* Loads program into RAM CPU, RAM, 1/0 Devices

e Starts CPU running its code
* |mplements multiprogramming
 More than one program can run at the same time
* OS shares resources, including CPU, among the programs
 When one program is waiting, another can proceed
* Process

* An abstraction of a running program



The Kernel

* Core OS functionality

 Managing hardware

 Managing OS abstractions exported to users

* Such as files

* Implementing interfaces to applications and devices
* Mechanisms

 Enable the hardware to run processes
* Policies

* (Govern abstractions, such as deciding which process gets
CPU time next



System Calls

* A programming interface for users of the system
e Part of the kernel
 Example:
* Get time of day from the gettimeofday system call



Kernel Components

User/Program

System Call Interface

Core OS Functionality i—— OS Kernel

Device Interface

Disk Keyboard Network
Driver Driver Driver

Computer
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______ i loaded into OS

CPU RAM
Disk Keyboard NIC




13.1. Booting and Running



Starting a Program Running on System

3. Init CPU state CPU
to run process —7| Registers

Cache

2. Create & init

new process RAM

-+

bus

1. Load binary
from disk
into RAM




13.1.1. OS Booting

* Booting
* Runs firmware (nonvolatile code)
* BIOS (Basic Input/Output System) or
 UEFI (Unified Extensible Firmware Interface)
* Loads boot block into RAM and starts it running
* That loads the rest of the OS from disk
* Discovers and initializes hardware resources

e |nitializes data structures and abstractions to make the
system ready for users



13.1.2. Getting the OS to Do Something: Interrupts and Traps

User/Program:
write ()
system call ——
OS: AN
- Interrupt -
HW: NIC

Figure 2. In an interrupt-driven system, user-level programs make
system calls, and hardware devices issue interrupts to initiate OS
actions.



Interrupts and Traps

* Interrupts that come from the hardware layer
 such as when a NIC receives data from the network,
* are called hardware interrupts, or just interrupts

* Interrupts that come from the software layer
e such as when an application makes a system call
e are called traps

* Exceptions from either layer may also interrupt the OS
* Such as disk read error, or divide by zero



Example: Write system call

GNU nano 3.2 hello.asm

section .text
global _start

_start:

mov edx, len
mov ecX, msg
mov ebx, 1
mov eax, 4
int 0x80

mov eax, 1
int ©x86

section .data

msg db "Hello World!"
len equ S§ - msg




Interrupt Bus

* Sends a signal from hardware to the CPU
 CPU runs handler code

Interrupt
cru T Bus RAM
\. /
‘ Buses
Disk
Cntrl
1

— e




User Mode and Kernel Mode

* User Mode

* Restricted access to hardware

e Cannot access OS instructions or date

 Can only access memory allocated to it by the OS
* Kernel Mode

e Can execute any instructions

* Can access any memory location

e Can access all hardware directly

User Program Running: . ~———> user mode

*Interrupt Handler

OS Running:

= kernel mode

Time: : : >




Process Address Space

* The Kernel was mapped into the top of every process’s
address space

* This system was replaced in 2018 to mitigate the Meltdown
hardware exploit

Process A’s Process B’s
Address Space Address Space

. 0S mapped into
. every process’
. address space




13.2. Processes



Processes

A process

* represents an instance of a program running in the system,
which includes

* the program’s binary executable code, data, and
execution context

* The context tracks the program’s execution

* maintaining its register values, stack location, and the
instruction it is currently executing

 Multiprogramming systems
e support multiple processes at the same time



Lone View

* OS isolates processes from one another

* Gives each process the illusion that it’s controlling the entire
machine



13.2.1. Multiprogramming and Context Switching

* Timesharing
* OS gives each process a time slice or quantum
* afew milliseconds of CPU time

* Processes run concurrently

* their executions overlap in time



Context Switching

* OS saves context of the currently running process

* register values (PC, stack pointers, general-purpose register,
condition codes, etc.)

* memory state
e other states like open files
* OS restores the saved context from another process
* resumes execution from the instruction where it left off



13.2.2. Process State

* Process id (PID)
e unigue identifier for a process
 ps command shows PID values
 Address space information
* Execution state
 CPU reqister values, stack location
* Resources
* e.g., open files
* Process state

» determines its eligibility for execution on the CPU



new process

Process States

Event
occurs

" @



13.2.3. Creating (and Destroying) Processes

* The fork system call
* creates a new process
 Parent process

* the process calling
fork

e Child process

* the new process it
creates

e Init
* The first process
* Created at boot time



Fork Demo

* wget https://samsclass.info/COMSC-142/proj/forkdemo3.c
e gcc -o forkdemod forkdemo3.c

. O sambowne — debian@debian: ~/COMSC-142/ch13 — ssh debian@192.168.121.173 —...

debian®debian:~/COMSC-142/ch13%$ cat forkdemo3.c
#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

int main() {
pid_t pid;

/* create a new child process */
pid = fork();

/* both parent and child execute this */
printf("pid = %d\n", pid);
}debian®debian:~/COMSC-142/ch13$ ./forkdemo3
pid = 6582
pid = 0
debian@debian:~/COMSC-142/ch13$ B


https://samsclass.info/COMSC-142/proj/forkdemo3.c

Fork’s Return Value

e fork returns 0 to the child
process and the child’s

PID value (14) to the
parent.

Parent (pid 12)

pid=fork()

Child (pid 14)

Exact copy
of parent

pid:0



Fork Demo

e wget https://samsclass.info/COMSC-142/proj/forkdemo4.c

. O sambowne — debian@debian: ~/COMSC-142/ch13 — ssh debian@192.168.121.173 — 73x26
int main(void) {

pid_t pid, mypid;
printf("A\n");
pid = fork(); /* create a new child process x/

if(pid == -1) { /% check and handle error return value *x/
printf("fork failed!\n");
exit(pid);

}

if (pid == @) { /% the child process *x/
mypid = getpid();
printf("Child: fork returned %d, my pid %d\n", pid, mypid);

} else { /x the parent process x/

mypid = getpid();

printf("Parent: fork returned %d, my pid %d\n", pid, mypid);
}

printf("B:%d\n", mypid);

return 0;
debian@Pdebian:~/COMSC-142/ch13% ./forkdemos4



Fork Demo

. O sambowne — debian@debian: ~/[COMSC-142/ch13 — ssh debian@192.168.121.173 — 62x8

debian®debian:~/COMSC-142/ch13$%$ gcc -o forkdemo4 forkdemo4.c
debian®debian:~/COMSC-142/ch13$ ./forkdemo4

A

Parent: fork returned 6646, my pid 6645
B:6645

Child: fork returned 0, my pid 6646
B:6646

debian@debian:~/COMSC-142/ch13$ |




Possible Order of Outputs

* Parent and child run independently

Table 1. All Six Possible Orderings of Example Program Output

Option 1 Option2 Option3 Option4 OptionS  Option 6

A A A A A A
Parent.. Parent.. Parent.. Child.. Child.. Child..
Child.. Child.. B:12 Parent.. Parent.. B:14
B:12 B:14 Child.. B:12 B:14 Parent..

B:14 B:12 B:14 B:14 B:12 B:12



13.2.4. exec

e QOverlays the calling process’s image with a new image from a
binary executable file.

int execvp(char *filename, char =*argv|[]);



execvp Demo

e wget https://samsclass.info/COMSC-142/proj/execvpdemo.c

. O sambowne — debian@debian: ~/COMSC-142/ch13 — ssh debian@192.168.121.173 — 69x21

int main() {
pid_t pid;
int ret;
char xargv[2];

argv[o] = "1s";
argv[1l] = NULL;

pid = fork();
if (pid == @) { /% child process x/
ret = execvp("ls", argv);
if (ret < 0) {
printf("Error: execvp returned!!!\n");
exit(ret);

¥
¥
debian@debian:~/COMSC-142/ch13$ ./execvpdemo
debian®debian:~/COMSC-142/ch13$ execvpdemo execvpdemo.c forkdemo3
forkdemo3.c forkdemo4 forkdemo4.c
debian@debian:~/COMSC-142/ch13$ |}




Parent (pid 12) Parent (pid 12)

Child (pid 14) Child (pid 14)

execvp (...)

pid:0



execvp Return

 The program should not return from execvp
|t should be replaced by the new executable
* With the same pid

O sambowne — debian@debian: ~/COMSC-142/ch13 — ssh debian@192.168.121....

pid = fork();
if (pid == @) { /% child process x/
ret = execvp("ls", argv);
if (ret < @) {
printf("Error: execvp returned!!!\n");
exit(ret);






13.2.5. exit and wait

* Processes can be triggered to exit by:
 Completing all of its application code

e returning from its main function leads to a process
iInvoking the exit system call

* Perform an invalid action
e such as dividing by zero or dereferencing a null pointer
* Receiving a signal
* from the OS or another process
 telling it to exit

* In fact, dividing by zero and NULL pointer dereferences result
in the OS sending the process SIGFPE and SIGSEGV signals
telling it to exit



Signals

* Signals are software interrupts
* SIGSEGV for null pointer dereference
* SIGKILL from a parent calls exit in a child process
* Pressing Ctrl+C sends SIGINT, which also calls exit

* After calling exit, the OS delivers a SIGCHLD signal to the
parent process

* The child becomes a zombie process

* it moves to the Exited state and can no longer run on the
CPU

* A parent process reaps its zombie child (cleans up the rest
of its state from the system) by calling the wait system call



Parent (pid 12) Parent (pid 12) Parent (pid 12)

Child (pid 14) Child (pid 14)

SIGCHLD

ZOMBIE



Blocking

* If the child is still executing when the parent process calls wait
* the parent blocks until the child exits

* (the parent enters the Blocked state waiting for
the SIGCHLD signal event to happen)

* The blocking behavior of the parent can be seen if you run a
program (a.out) in the foreground of a shell —the shell program
doesn’t print out a shell prompt until a.out terminates,
indicating that the shell parent process is blocked on a call

to wait, waiting until it receives a SIGCHLD from its child
process running a.out.

. O sambowne — debian@debian: ~ — ssh debian@192.168.121.173 — 54x5
debian®Pdebian:~$

debian@Pdebian:~$

debian®Pdebian:~$

debian®Pdebian:~$ sleep 10



Backgrounding

* If the parent implements a SIGCHLD signal handler that
contains the call to wait

* then the parent only calls wait when there is an exited child
process 1o reap

e and thus it doesn’t block on a wait call.

* This behavior can be seen by running a program in the
background in a shell (a.out &).

O sambowne — debian@debian: ~ — ssh debian@192.168.121.173 — 54x8

debian@debian:~$ sleep 10 &

[1] 7468

debian@Pdebian:~$ ps

PID TTY TIME CMD

7352 pts/2 00:00:00 bash
7468 pts/2 00:00:00 sleep
7469 pts/2 00:00:00 ps

debian@®debian:~$



Example

pid_t pidl1, pid2,
int status;

ret;

printf("A\n");

pid1 = fork();
if (pid1 == 0 )
printf("B\n

’

{
")

pid2 = fork();
if (pid2 0 ){
printf(“C\n");

} else {
ret
printf("D\n");
exit(0);

}
} else {

printf("E\n");
ret = wait(&status);
printf("F\n");

/* child 1 */

/* child 2 */

execvp("a.out", NULL);

/* child 1 (parent of child 2) */

wait(&status);

/* original parent */




Parent:

Time



13.3. Virtual Memory



Virtual Memory

e Virtual memory is an abstraction that gives each process its
own private, logical address space in which its instructions
and data are stored—Ilone view

* Processes cannot access the contents of one another’s
address spaces

 Some parts of a process’s virtual address space come from
the binary executable file it’s running (e.g., the text portion
contains program instructions from the a.out file)

» Other parts of a process’s virtual address space are created at
runtime (e.g., the stack)



Two Processes

 From the same executable file
e Each instance of the variable x is independent

Process 1’s Virtual Process 2’s Virtual
addresses  Address Space Address Space
O: 0S O: 0S
I Code (instructions) : Code
... from
Data (globals) : a.out Data
I Heap Heap
:mmc_reated
ﬁ . at runtime ﬁ
Stack 6 |:x Stack
max: max:




13.3.1. Memory Addresses

 Virtual
addresses

e |ocationsin a
Process’s
virtual address
space

* Physical
addresses

e locations in
physical
memory (RAM)

Physical
addresses
0x0:

0x20000:

0x40000:

max:

RAM

0S

P1

P2

P3

P1 & P2 (running the
same program) get
their own private copy
of variable x, each one
stored at a DIFFERENT
physical address in RAM.



Virtual Addresses

0x1234:

max:

P1’s VAS

P1 & P2 (running the same
program) have their own
private copy of variable x,
each stored at the SAME
virtual address.

O:

- X / \ 0x1234:

max:

P2’s VAS




13.3.2. Virtual Address to Physical Address Translation

« Memory Management Unit (MMU) is the part of the
computer hardware that implements address translation

 When the CPU needs to fetch data from physical memory,
the virtual address is first translated by the MMU to a
physical addresses that is used to address RAM.

RAM
O:
1:
Virtual address Physical address E
(VA) (PA) |
CPU p—> MMU [ 104:
24100 104 105:

4 byte value stored at PA 104



13.3.3. Paging

 The OS divides the
virtual address space
of each process into
fixed-sized chunks
called pages

* Typically 4 KB

* Physical memory is
similarly divided by the
OS into page-sized
chunks called frames

Page:

500:

1000:

230:

1000:

P1's VAS

P2's VAS 513:

N

Frame:

100:
101:
102:

880:

2"-1:

RAM

P1: 1000

P2: 230

P1:500

P2:1000




Virtual and Physical Addresses in Paged Systems

* Paged virtual memory systems divide the bits of a virtual
address into two parts:

* high-order bits specify the page number on which the
virtual address is stored

* low-order bits correspond to the byte offset within the page
* Physical addresses are also divided:

* high-order bits specify the frame number

* low-order bits specify the byte offset within the frame



Virtual Address Space of 2" bytes, Page size 2* bytes, VA bits:

n-1

k k-1

Virtual Page number: p

Byte offset within Page: d

Physical Address Space of 2™ bytes, Page size 2X bytes, PA bits:

m-1

k k-1

Frame number: f

Byte offset within Frame: d




Page Tables for Virtual-to-Physical Page Mapping

RAM

 The OS keeps a per-
process page table P2’s Page Table:

e Stores the process’s
virtual page number
to physical frame
number mappings

P1’s Page Table:

Pl: page i S

I P2: page j —

P2: page i <
|

Pl: page ] S—




Page Table Entries

* For each page of virtual memory, the page table stores
one page table entry (PTE)

e contains the frame number of physical memory (RAM)
storing the virtual page.

 may also contain other info, such as a valid bit

Page Table Entry:

Valid Bit Frame Number

For Virtual Page P: 1 Physical Frame # (f) storing Virtual Page P

(ex) PTE for Virtual Page 6 if it is currently stored in RAM Frame 23:

PT[6]: | 1 23




Page Table Base Register (PTBR)

 RAM address of the running process’s page table

n-1 k k-1 0
Virtual AddressL Page number (p) page offset (d)
Process Pi’s Page Table
Page table _
. Valid Frame Number
base register
(PTBR) } P
—> p:| 1 f
if Valid bit O:
page fault
m—1 v k k-1 v O

Physical Address: Frame number (f) frame offset (d)




13.3.4. Memory Efficiency

* Processes tend to access pages of their memory space with a
high degree of temporal or spatial locality

e RAM as a cache for disk:

* OS allows processes to run only having some of their virtual
memory pages in RAM

* Their other virtual memory pages remain on secondary
storage devices, such as disk

* OS only brings them into RAM when the process accesses
addresses on these pages



Page Fault

* A process tries to access a page that is currently not stored in
RAM

* OS finds a free frame of RAM and loads the page into it

* A page replacement policy

used when free RAM is exhausted in the system

for example, an OS might implement the least recently
used (LRU) policy

which replaces the page stored in the frame of RAM that has
been accessed least recently



Making Page Accesses Faster

* |n a paged virtual memory system

* every load and store to a virtual memory address
requires two RAM accesses

* Read the page table entry to get the frame number for
virtual-to-physical address translation

» Read or write the byte(s) at the physical RAM address

* twice as slow as in a system that supports direct physical
RAM addressing

* Translation Look-aside Buffer (TLB) is a hardware cache that
stores (page number, frame number) mappings



Translation Look-aside Buffer

If no matching entry for p in TLB,

then get f from PageTable[p]:

PTBR

Process Pi’s Page Table

valid Frame #

VA:
Page number (p) page offset (d)
Translation Look-aside Buffer (TLB)
Page Number Frame Number
—>
- p match o D {
an entry?
—>
—>
yes
Y A4
PA: Frame number (f) frame offset (d)

—

p: |1 f




13.4. Interprocess Communication



Three Methods

e Signals
* very restricted form of interprocess communication

* one process can send a signal to another process to notify it
of some event

* Message passing
e a process exchanges messages with another process

 Shared memory

e a process shares all or part of its virtual address space with
other processes



13.4.1. Signals

* Signals are similar to hardware interrupts and traps

* but are different from both.
* Trap is a synchronous software interrupt

e occurs when a process explicitly invokes a system call
* Signals are asynchronous

e a process may be interrupted by the receipt of a signal at
any point in its execution

* Signals also differ from asynchronous hardware interrupts in
that they are triggered by software rather than hardware
devices



Signals

Signal
Name

SIGSEGV
SIGINT

SIGCHLD

SIGALRM
SIGKILL

SIGBUS

SIGSTOP

SIGCONT

Description

Segmentation fault (e.g., dereferencing a null pointer)
Interrupt process (e.g., Ctrl-C in terminal window to kill process)

Child process has exited (e.g., a child is now a zombie after run-
ning exit)

Notify a process a timer goes off (e.g., alarm(2) every 2 secs)
Terminate a process (e.g., pkill -9 a.out)

Bus error occurred (e.g., a misaligned memory address to ac-
cess an int value)

Suspend a process, move to Blocked state (e.g., Ctrl-Z)

Continue a blocked process (move it to the Ready state; e.qg.,
bg or fg)



Default Actions

 When a process receives a signal, one of several default
actions can occur:

* the process can terminate
* the signal can be ignored
* the process can be blocked

* the process can be unblocked

* Application programmers, however, can change the default

action of most signals and can write their own signal handler
code



Signal Handlers

/* signal handler for SIGALRM */
void sigalarm_handler(int sig) {
printf("BEEP, signal number %d\n.", sig);

fflush(stdout);
alarm(5); /* sends another SIGALRM in 5 seconds #*/

/* signal handler for SIGCONT x*/

void sigcont_handler(int sig) {
printf("in sigcont handler function, signal number

fflush(stdout);

/* signal handler for SIGINT */

void sigint_handler(int sig) {
printf("in sigint handler function, signal number %

fflush(stdout);
exit(0);




/* main: register signal handlers and repeatedly block
int main(void) {

/* Register signal handlers. */

if (signal(SIGCONT, sigcont_handler) == SIG_ERR) {
printf("Error call to signal, SIGCONT\n");
exit(1);

if (signal(SIGINT, sigint_handler) == SIG_ERR) {
printf("Error call to signal, SIGINT\n");
exit(1);

if (signal(SIGALRM, sigalarm_handler) == SIG_ERR) {
printf("Error call to signal, SIGALRM\n");
exit(1);




printf("kill -CONT %d to send SIGCONT\n", getpid())
alarm(5); /#* sends a SIGALRM in 5 seconds #*/

while(1) {
pause(); /# wait for a signal to happen */




13.4.2. Message Passing

* pipe is a one-way communication channel for two processes
running on the same machine

« Example: cat foo.c | grep factorial

cat process grep process
write to stdout read from stdin
(ex. printf) (ex. scanf)

N

user-level

L8 B N B BN B B B B B B B B B &8 B B B B B B B B B B B B B B B B B B | B _ B B B B B B B

kernel-level (OS)




Sockets

* A socket is a two-way communication channel

* message passing is the only way in which processes on
different computers can communicate

Computer A Computer B

Process Pl Process P2

fd = socket () fd = socket ()
send (fd, msqg, ...) Network 3 recv (fd, msg, ..
recv (fd, msqg, ...) < send (fd, msqg, ...)

P




13.4.3. Shared
Memory

500: V:l £:100

¢ Entl’ieS in the page Frame: RAM
tables of two or o1 .
more processes to .
map to the same
physical frames
100:
Page:  P2's Page Table
0: 2m_1:

1000 V:1l £f£:100

2°-1:







