
Sam Bowne Apr 18, 2025

14a. Leveraging Shared Memory in the
Multicore Era

For COMSC 142

• https://diveintosystems.org/book/index.html

Free online textbook

Ch 14a:

14.1. Programming Multicore Systems

14.2. POSIX Threads

14.3. Synchronizing Threads

Ch 14b:

14.4. Measuring Parallel Performance

14.5. Cache Coherence

14.6. Thread Safety

14.7. Implicit Threading with OpenMP

Topics

CPUs, Processors, and Cores

• Processor
• any circuit that performs computation

• Central Processing Unit (CPU) is a processor

• Multicore processor
• processor with multiple compute cores

• Core
• a compute unit with an ALU, registers, and a bit of cache

Performance walls

• Memory wall

• improvements in memory technology did not keep pace with

improvements in clock speed

• memory is a bottleneck to performance

• speeding up the execution of a CPU no longer improves its

overall system performance

• Power wall

• increasing the number of transistors on a processor

necessarily increases that processor’s temperature and
power consumption

• increases cost to power and cool the system

• power is now the dominant concern in computer system

design

CPU v. GPU

• Graphics Processing Unit (GPU)

• cores have even fewer transistors than CPU cores

• are specialized for particular tasks involving vectors

• A typical GPU can have 5,000 or more GPU cores

• Computing with GPUs is known as manycore computing
• In this chapter, we concentrate on multicore computing

Total # physical cores: sockets x cores per socket = 1 x 4

Hyperthreading

• Efficient processing of multiple threads on a single core

• So a processor that can run 2 threads per core

• with 4 physical cores

• has 8 logical cores

• Performance Cores and Efficiency Cores

• E-cores consume less power

• P-cores have higher clock speeds

14.1. Programming
Multicore Systems

14.1.1. The Impact of Multicore Systems on Process Execution

• Context switch

• occurs when the CPU changes which process it currently

executes

• Diagram is for a single-core system

CPU Time and Wall-Clock Time

• CPU time
• measures the amount of time a process takes to execute

on a CPU

• Wall-clock time
• the amount of time a human perceives a process takes to

complete.

• often significantly longer than the CPU time, due to context

switches

Two-core system

• CPU time is the same as single-core system

• But Wall Clock Time is decreased

14.1.2. Expediting Process Execution with Threads

• Threads
• lightweight, independent execution flows

An Example: Scalar Multiplication

• Suppose that array has N total elements. To create a
multithreaded version of this application with t threads, it is
necessary to:

• Create t threads.

• Assign each thread a subset of the input array  

(i.e., N/t elements).

• Instruct each thread to multiply the elements in its array

subset by s

Four Threads

Four Threads

14.2. POSIX Threads

POSIX

• POSIX is an acronym for Portable Operating System Interface

• An IEEE standard that specifies how UNIX systems look, act,

and feel

• Code using POSIX on a Linux machine will certainly work on

other Linux machines, and it will likely work on machines
running macOS or other UNIX variants

Hello Threading! Writing Your First Multithreaded Program

• wget https://samsclass.info/COMSC-142/proj/threads1.c

• gcc -o threads1 threads1.c

• #include <pthread.h>
• Define a thread function that we later pass to pthread_create
• analogous to a main function

• The thread function is of type void *

Hello Threading! Writing Your First Multithreaded Program

• main allocates space for thread_array and thread_ids
• thread_array contains the set of addresses for each thread

• thread_ids array stores the set of arguments that each

thread is passed

• Creates threads with pthread_create
• Threads execute independently

• pthread_join waits for all the threads to complete

• Terminates all the threads

• Then proceeds as a single-thread process

Hello Threading! Writing Your First Multithreaded Program

Thread order

• Threads
may not
execute in
order

14.2.4. Revisiting Scalar Multiplication

• wget https://samsclass.info/COMSC-142/proj/threads2.c

• gcc -o threads2 threads2.c

• My virtual system has 4 CPUs

14.2.5. Improving Scalar Multiplication: Multiple Arguments

• To avoid global variables, define a struct

In main()

Pass struct as argument

• In main()

Ch 14a-1

14.3. Synchronizing
Threads

14.3. Synchronizing Threads

• Thread synchronization
• Forcing threads to execute in a particular order

• May slow execution, but may be necessary

• Four methods:

• Mutex
• Semaphores
• Barriers
• Condition variables

• All threads of a multithreaded process share the same heap

CountSort

• Input is an array of N elements, with only R possible values

• R is much smaller than N

• Input is an array A of 15 items:

• A = [9, 0, 2, 7, 9, 0, 1, 4, 2, 2, 4, 5, 0, 9, 1]
• Possible values are 0 through 9

• CountSort counts the number of times each value occurs

• Creates an array of counts

• counts = [3, 2, 3, 0, 2, 1, 0, 1, 0, 3]

• Use those counts to build a sorted array

• A = [0, 0, 0, 1, 1, 2, 2, 2, 4, 4, 5, 7, 9, 9, 9]

CountSort
• wget https://samsclass.info/COMSC-142/proj/countSort.c

• gcc -o countSort countSort.c

Parallel countElems

Parallel countless

Results

• Error: different results for different number of threads

• More threads cause undercounts

Data race (race condition)

• Single-threaded version

• counts[val] = counts[val] + 1

• Multithreaded version

1. Read counts[val] and place into a register.

2. Modify the register by incrementing it by one.

3. Write the contents of the register to counts[val].

Two threads

Atomic operations

• An atomic operation is “all or none”

• It either completes correctly, or fails completely

• We must isolate the critical section of code

• And make it execute atomically

Sequence without error

• Define the mutex as a global variable

• In countElem, only one thread at a time can get a lock on the
mutex
• Mutexes are unlocked by default

Using a Mutex

Creating and destroying the mutex

Counting is correct now

Measuring performance

• More threads consume more time!

Locked for whole loop

• One thread must complete its loop before another thread can
run

• Makes the program effectively serial

The Mutex: Reloaded

• Only lock for each write operation

Operates correctly

Performance

• Locking and unlocking are expensive operations

• A lot of time overhead

The Mutex: Revisited

• Each thread has a private local array of counts

• Only uses mutex when adding totals to global counts array

Performance

• More threads consume less wall time

Deadlock
• A deadlocked thread is blocked from execution by another

thread, which itself is blocked on a blocked thread

Deadlock Condition

• Thread 0 sends funds from A to B

• Thread 1 sends funds from B to A

Avoiding deadlock

• Only lock one mutex at a time

14.3.2. Semaphores

• Can have many values

• Counting semaphore
• Values: 0 through r
• Decrements each time a resource is uses

• When the counting semaphore reaches 0, no more

resources are available

• Any other threads trying to acquire the resource are blocked

• Can be locked by default

• Any thread can unlock a semaphore

• Only the calling thread can unlock a mutex

Using semaphores

• #include <semaphore.h>
• There is no standard; function calls are different on different

systems

• Declaration: sem_t semaphore
• Initialize: sem_init(&semaphore, 1, 0)

• Parameters: address of semaphore, default state, whether to

share with threads of a process (e.g., with value 0) or
between processes (e.g., with value 1)

• Destroy: sem_destroy(&semaphore)

Using semaphores

• sem_wait function indicates that a resource is being used,
and decrements the semaphore

• Blocks if semaphore reaches zero

• sem_post indicates that a resource is being freed, and
increments the semaphore

14.3.3. Other Synchronization Constructs

• barrier

• part of the pthreads library

• forces all threads to reach a common point in execution

before releasing the threads to continue executing

• Usage:

• Declare a global variable pthread_barrier_t barrier

• Initialize in main pthread_barrier_init(&barrier)

• Destroy after use pthread_barrier_destroy(&barrier)

• pthread_barrier_wait function creates a synchronization

point

Barrier example

• part of the pthreads library

• force a thread to block until a particular condition is reached

• always used in conjunction with a mutex

Condition Variables

• Usage:

• initialize with pthread_cond_init
• destroy with pthread_cond_destroy
• pthread_cond_wait(&cond, &mutex)
• causes the calling thread to block on the condition

variable cond until another thread signals it (or "wakes" it
up)

• pthread_cond_signal(&cond)

• causes the calling thread to unblock (or signal) another

thread that is waiting

Condition variables

Condition variable example

• main()

Condition variable example

• main()

Condition variable example

Condition variable example

Condition variable example

Broadcasting
• pthread_cond_broadcast(&cond)
• wakes up all threads that are blocked on condition cond

Ch 14a-2

