14a. Leveraging Shared Memory in the
Multicore Era

For COMSC 142

Sam Bowne Apr 18, 2025

Free online textbook

#{ Dive into Systems :: Div

@ diveintosystems.org/book/index.html

Dive Into Systems

f

Dive into Systems

Contents
Authors

Book Version

Authors

Suzanne J. Matthews, Ph.D. — West Point
suzanne.matthews@westpoint.edu

Tia Newhall, Ph.D. — Swarthmore College
newhall@cs.swarthmore.edu

Kevin C. Webb, Ph.D. — Swarthmore College
kwebb@cs.swarthmore.edu

 https://diveintosystems.org/book/index.html

Topics

Ch 14a:
14.1. Programming Multicore Systems
14.2. POSIX Threads
14.3. Synchronizing Threads
Ch 14Db:
14.4. Measuring Parallel Performance
14.5. Cache Coherence
14.6. Thread Safety
14.7. Implicit Threading with OpenMP

CPUs, Processors, and Cores

* Processor

e any circuit that performs computation

* Central Processing Unit (CPU) is a processor
 Multicore processor

e processor with multiple compute cores
 Core

e a compute unit with an ALU, registers, and a bit of cache

Performance walls

* Memory wall

* Improvements in memory technology did not keep pace with
Improvements in clock speed

 memory is a bottleneck to performance

» speeding up the execution of a CPU no longer improves its
overall system performance

 Power wall

* Increasing the number of transistors on a processor
necessarily increases that processor’s temperature and
power consumption

* increases cost to power and cool the system

* power is now the dominant concern in computer system
design

CPU v. GPU

 Graphics Processing Unit (GPU)

e cores have even fewer transistors than CPU cores

* are specialized for particular tasks involving vectors

* Atypical GPU can have 5,000 or more GPU cores
 Computing with GPUs is known as manycore computing

* |n this chapter, we concentrate on multicore computing

S lscpu

Architecture:
CPU op-mode(s):
Byte Order:
CPU(s):

Thread(s) per core:
Core(s) per socket:
Socket(s):

Model name:

CPU MHz:

CPU max MHz:

CPU min MHz:

L1d cache:

L1i cache:

L2 cache:

L3 cache:

On-line CPU(s) list:

x86_64

32-bit, 64-bit
Little Endian
8

-7

2

4

1

Intel(R) Core(TM) i7-3770 CPU @ 3.48GHz
1607 .562

3900 .0000

1600 .0000

32K

32K

256K

8192K

Total # physical cores: sockets x cores per socket =1 x 4

Hyperthreading

» Efficient processing of multiple threads on a single core
S0 a processor that can run 2 threads per core

* with 4 physical cores

* has 8 logical cores
 Performance Cores and Efficiency Cores

 E-cores consume less power

* P-cores have higher clock speeds

14.1. Programming
Multicore Systems

14.1.1. The Impact of Multicore Systems on Process Execution

e Context switch

e occurs when the CPU changes which process it currently
executes

* Diagram is for a single-core system

Tm 712 713 14 15 716 17 18 19 T10 T11

Process 1 I

Process 2 1 1 1

Process 3 ~ ' 1 1
Process 4 [1 ‘

Process 5 1 1

Time

CPU Time and Wall-Clock Time

e CPU time

 measures the amount of time a process takes to execute
on a CPU

e Wall-clock time

* the amount of time a human perceives a process takes to
complete.

» often significantly longer than the CPU time, due to context
switches

Two-core system

 CPU time is the same as single-core system
e But Wall Clock Time is decreased

m 12 13 14 15 16 17 18 19 T10 T11

Process1] B]

Process 2 [NI

Process 3 i I
Process 4 I
Process 5 I E—

Time

14.1.2. Expediting Process Execution with Threads

e Threads
* lightweight, independent execution flows

Process’s Virtual Address Space Process’s Virtual Address Space
(1 Thread) (2 Threads)
O: 0S 0z 0S
Code (instructions) Code (instructions)
oo.rom . b from
Data (globals) ;. a.out Data (globals) . a.out
Heap § | Heap
o
: at runtime . atruntime
ﬁ : Thread 1's Stack :
Stack : Thread 0's Stack
max: L] : max: L] -

An Example: Scalar Multiplication

void scalar_multiply(int * array, long length, int s) {
int 1i;
for (i = 8; 1 < length; i++) {
array[i] = array[i] * s;

}

* Suppose that array has N total elements. To create a

multithreaded version of this application with t threads, it is
necessary to:

e Create t threads.

* Assign each thread a subset of the input array
(i.e., N/t elements).

* Instruct each thread to multiply the elements in its array
subset by s

Four Threads

Single core CPU
1 T2 3 T4

Thread 1 _

Thread 2 E
Thread 3 —1 ;
Thread 4 ‘ ’ —1
1'5 36 4‘5 60
Time (s)

Dual-core CPU
T1 T2 T3

Thread 1 S
Thread 2 [

Thread 3 [

T4

Thread4d — [

15 30 45

60

Time (s)

>

Four Threads

Thread 1

Thread 2

Thread 3

Thread 4

Quad-core CPU

T1

NN

15

2 T3

30 45

T4

60

Time (s)

14.2. POSIX Threads

POSIX

 POSIX is an acronym for Portable Operating System Interface

* An IEEE standard that specifies how UNIX systems look, act,
and feel

e Code using POSIX on a Linux machine will certainly work on
other Linux machines, and it will likely work on machines
running macOS or other UNIX variants

Hello Threading! Writing Your First Multithreaded Program

wget https://samsclass.info/COMSC-142/proj/threads.c
e gcc -o threads1 threads1.c

* #include <pthread.h>

* Define a thread function that we later pass to pthread_create
e analogous to a main function

The thread function is of type void *

. O sambowne — debian@debian: ~/COMSC-142/ch14 — ssh debian@192.168.121.173 — 80x17

debian@debian:~/COMSC-142/ch14$ cat threadsl.c
#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

/* The "thread function" passed to pthread_create. Each thread executes this
 function and terminates when it returns from this function. x/
void *HelloWorld(void *id) {

/* We know the argument i1s a pointer to a long, so we cast it from a
* generic (void *) to a (long *). */

long *myid = (long *) id;

printf("Hello world! I am thread %1ld\n", smyid);

return NULL; // We don't need our threads to return anything.

Hello Threading! Writing Your First Multithreaded Program

 main allocates space for thread_array and thread_ids
* thread_array contains the set of addresses for each thread

* thread_ids array stores the set of arguments that each
thread is passed

. O sambowne — debian@debian: ~/COMSC-142/ch14 — ssh debian@192.168.121.173 — 80x18

int main(int argc, char xxargv) {
int 1i;
int nthreads; //number of threads
pthread_t *thread_array; //pointer to future thread array
long *thread_ids;

// Read the number of threads to create from the command line.

if (argc !=2) {
fprintf(stderr, "usage: %s <n>\n", argv[0l);
fprintf(stderr, "where <n> is the number of threads\n");
return 1;

}

nthreads = strtol(argv[1], NULL, 190);

// Allocate space for thread structs and identifiers.
thread_array = malloc(nthreads * sizeof(pthread_t));
thread_ids = malloc(nthreads *x sizeof(long));

Hello Threading! Writing Your First Multithreaded Program

* Creates threads with pthread_create

* Threads execute independently

* pthread_join waits for all the threads to complete
 Terminates all the threads
 Then proceeds as a single-thread process

. O sambowne — debian@debian: ~/COMSC-142/ch14 — ssh debian@192.168.121.173 — 80x18

// Assign each thread an ID and create all the threads.
for (1 = 9; 1 < nthreads; i++) {

thread_ids[i] = 1i;

pthread_create(&thread_array[i], NULL, HelloWorld, &thread_ids[il);
h

/* Join all the threads. Main will pause in this loop until all threads
* have returned from the thread function. x/
for (1 = ©0; 1 < nthreads; i++) {
pthread_join(thread_array[i], NULL);
h

free(thread_array);
free(thread_ids);

return 0;

Thread order

e Threads
may not
execute in
order

debian®Pdebianarm:~/COMSC-142/ch14% ./threadsl 10

sambowne — debian@debianarm: ~/[COMSC-142/ch14 — ssh debian@172....
debian®debianarm:~/COMSC-142/ch14$./threadsl 10

O
Hello world! I am thread ©
Hello world! I am thread 1
Hello world! I am thread 2
Hello world! I am thread 3
Hello world! I am thread 4
Hello world! I am thread 5
Hello world! I am thread 7
Hello world! I am thread 6
Hello world! I am thread 9
Hello world! I am thread 8
Hello world! I am thread 1
Hello world! I am thread ©
Hello world! I am thread 5
Hello world! I am thread 2
Hello world! I am thread 3
Hello world! I am thread 8
Hello world! I am thread 4
Hello world! I am thread 9
Hello world! I am thread 6
Hello world! I am thread 7

debian@debianarm:~/COMSC-142/ch14$ sdsfswfwl

14.2.4. Revisiting Scalar Multiplication

* wget https://samsclass.info/COMSC-142/proj/threads2.c
e gcc -o threads2 threads2.c

I sambowne — debian@debianarm: ~JCOMSC-142/ch14 — ssh debian@172.16.71.132 — 74x12

debian®debianarm:~/COMSC-142/ch14$ cat threads2.c =
#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#define LENGTH 1000000000

long *array; // defined in main
long length = LENGTH;

long nthreads; //number of threads
long s = 10; //scalar

. sambowne — debian@debianarm: ~/[COMSC-142/ch14 — ssh debian®172.16.71.132 — 76x22

void *scalar_multiply(void *id) {
long *myid = (long *) id;
int 1;

//assign each thread its own chunk of elements to process
long chunk = length / nthreads;
long start = xmyid * chunk;
long end = start + chunk;
if (kmyid == nthreads - 1) {
end = length;
}

//perform scalar multiplication on assigned chunk
for (i = start; 1 < end; i++) {
arrayl[i] *x= s;

}

// printf("Thread %d done\n", *myid);
return NULL;

I sambowne — debian@debianarm: ~JCOMSC-142/ch14 — ssh debian@172.16.71.132 — 84x21

int main(int argc, char sxargv) {
int 1;
// int nthreads; //number of threads
pthread_t xthread_array; //pointer to future thread array
long *thread_ids;

array = malloc(LENGTH x sizeof(long));

// Read the number of threads to create from the command line.

if (argc !=2) {
fprintf(stderr, "usage: %s <n>\n", argv([0]);
fprintf(stderr, "where <n> is the number of threads\n");
return 1;

¥

nthreads = strtol(argv[(1], NULL, 10);

// Allocate space for thread structs and identifiers.
thread_array = malloc(nthreads * sizeof(pthread_t));
thread_ids = malloc(nthreads * sizeof(long));

sambowne — debian@debianarm: ~JCOMSC-142/ch14 — ssh debian@172.16.71.132 — 82x18

// Assign each thread an ID and create all the threads.
for (1 = 8; 1 < nthreads; i++) {

thread_ids[i] = 1;

pthread_create(&thread_array[i], NULL, scalar_multiply, &thread_ids[i]);
}

/* Join all the threads. Main will pause in this loop until all threads
* have returned from the thread function. %/
for (1 = 0; 1 < nthreads; i++) {
pthread_join(thread_array[i], NULL);
}

free(thread_array);
free(thread_ids);

return 9;

e My virtual system has 4 CPUs

I sambowne — debian@debianarm: ~/COMSC-142/ch14 — ssh debian®172.16.71.132 — 78x9

debian@debianarm:~/COMSC-142/ch14$ { time(./threads2 1) 2>&1; } | grep real
real Om2.055s

debian@debianarm:~/COMSC-142/ch14$ { time(./threads2 2) 2>&1; } | grep real
real Om1.181s

debian@debianarm:~/COMSC-142/ch14$ { time(./threads2 4) 2>&1; } | grep real
real Omo.786s

debian@debianarm:~/COMSC-142/ch14$ { time(./threads2 8) 2>&1; } | grep real
real Ome .788s

debian@debianarm:~/COMSC-142/ch14$ | [

. sambowne — debian@debianarm: ~/[COMSC-142/ch14 — ssh debian@172.1...
debian@debianarm:~/COMSC-142/ch14$ lscpu
Architecture: aarchés4

CPU op-mode(s): 64-bit

Byte Order: Little Endian
CPU(s): 4

On-1line CPU(s) 1list: 9-3
Vendor ID: Apple

Model name: -

Model: 0
Thread(s) per core: 1
Core(s) per socket: 4
Socket(s): 1

14.2.5. Improving Scalar Multiplication: Multiple Arguments

* To avoid global variables, define a struct

struct t_arg {
int *array,;
long length;
long s;
long numthreads;
long id,;

In main()

long nthreads strtol(argv[1], NULL, 18); //get number of threads
long length = strtol(argv[2], NULL, 18); //get length of array
long s = strtol(argv[3], NULL, 10); //get scaling factor

int *array = malloc(length*sizeof(int));

//allocate space for thread structs and identifiers
pthread_t *thread_array = malloc(nthreads * sizeof(pthread_t));
struct t_arg *thread_args = malloc(nthreads * sizeof(struct t_arg));

//Populate thread arguments for all the threads

for (i = ©; 1 < nthreads; i++){
thread_args[i].array = array;
thread_args[i].length = length;
thread_args[i].s = s;
thread_args[i].numthreads = nthreads;
thread_args([i].id = i;

Pass struct as argument

* |In main()

for (i = 0; 1 < nthreads; i++){
pthread_create(&thread_array[i], NULL, scalar_multiply, &thread_args[i]);

}

14.3. Synchronizing
Threads

14.3. Synchronizing Threads

 Thread synchronization
* Forcing threads to execute in a particular order
 May slow execution, but may be necessary
* Four methods:
 Mutex
« Semaphores
 Barriers
« Condition variables
* All threads of a multithreaded process share the same heap

CountSort

* |Input is an array of N elements, with only R possible values
 Ris much smaller than N
* |nput is an array A of 15 items:
e« A=[9,0,2,7,9,0,1,4,2,2,4,5,0,9, 1]
* Possible values are 0 through 9
 CountSort counts the number of times each value occurs
e Creates an array of counts
e counts=[3,2,3,0,2,1,0, 1, 0, 3]
 Use those counts to build a sorted array
- A=[0,0,0,1,1,2,2,2,4,4,5,7,9,9, 9]

CountSort

e wget https://samsclass.info/COMSC-142/proj/countSort.c
e gcc -0 countSort countSort.c

. sambowne — debian@debianarm: ~JCOMSC-142/ch14 — ssh debian@1...

debian@debianarm:~/COMSC-142/ch14$./countSort 15 1
array before sort:

58858751773383%

result after sort:

133345557778888
debian@debianarm:~/COMSC-142/ch14$ [} |

. sambowne — debian@debianarm: ~/JCOMSC-142/ch14 — ssh debian®172.16.71.132 — 84x14

[/*step 1:
* compute the frequency of all the elements in the input array and store
* the associated counts of each element in array counts. The elements in the
* counts array are initialized to zero prior to the call to this function.
x/
void countElems(int *counts, int *array_A, long length) {
int val, 1i;
for (i = 9; 1 < length; i++) {
val = array_A[i]; //read the value at index i
counts[val] = counts[val] + 1; //update corresponding location in counts

. sambowne — debian@debianarm: ~JCOMSC-142/ch14 — ssh debian@®172.16.71.132 — 84x17

/* step 2:
* overwrite the input array (array_A) using the frequencies stored in the
* array counts
*/
void writeArray(int *counts, int *array_A) {
int i, j = @, amt;

for (1 = ©; i < MAX; i++) { //iterate over the counts array
amt = counts[i]; //capture frequency of element i
while (amt > @) { //while all values aren't written
array_A[j] = i; //replace value at index j of array_A with i
j++; //go to next position in array_A
amt--; //decrease the amount written by 1

Parallel countElems

void *countElems(void *args) {
struct t_arg * myargs = (struct t_arg *)args;

int *array = myargs->ap;
long *counts = myargs->countp;

Parallel countless

long chunk = length / nthreads;
long start = myid * chunk;
long end = (myid + 1) * chunk;

long val,;

if (myid == nthreads-1) {
end = length;

}

long 1i;

for (i = start; i < end; i++) {
val = array[i];
counts[val] = counts[val] + 1;

return NULL;

Results

 Error: different results for different number of threads
e More threads cause undercounts

S gcc -o countElems_p countElems_p.c -pthread

S./countElems_p 10000000 1 1
Counts array:
999170 1001044 999908 1000431 999998 1001479 999709 997250 1000804 1000207

S./countElems_p 10000000 1 2
Counts array:
661756 661977 657828 658479 657913 659308 658561 656879 658070 657276

S./countElems_p 10000000 1 4
Counts array:
579846 580814 580122 579772 582509 582713 582518 586917 581963 581094

Data race (race condition)

e Single-threaded version
e counts|val] = counts|val] + 1
* Multithreaded version
1. Read counts|val] and place into a register.
2. Modify the register by incrementing it by one.
3. Write the contents of the register to counts|val].

Two threads

Time

i+1

+2

i+3

Thread 0

Read counts|[1] and place into
Core O's register

Increment register by 1

Overwrite counts[1] with con-
tents of register

Table 1. A Possible Execution Sequence of Two Threads Running countElems

Thread 1

Read counts[1] and place into
Core 1's register

Increment register by 1

Overwrite counts[1] with con-
tents of register

Atomic operations

* An atomic operation is “all or none”
* |t either completes correctly, or fails completely
* We must isolate the critical section of code

 And make it execute atomically

long 1i;

for (i = start; i1 < end; i++) {
val = array[i];
counts[val] = counts|[val] + 1;

Sequence without error

i+1

[+2

i+3

i+4

i+5

Time

Table 2. Another Possible Execution Sequence of Two Threads Running countElems

Thread 0 Thread 1

Read counts[1] and place into
Core O's register

Increment register by 1

Overwrite counts[1] with con-
tents of register

Read counts[1] and place into
Core 1's register

Increment register by 1

Overwrite counts[1] with con-
tents of register

Using a Mutex

* Define the mutex as a global variable

pthread_mutex_t mutex;

* In countElem, only one thread at a time can get a lock on the
mutex

 Mutexes are unlocked by default

pthread_mutex_lock(&mutex) ;

for (i = start; i < end; i++) {
val = array[i];
counts[val] = counts|[val] + 1;

}

pthread_mutex_unlock(&mutex) ;

Creating and destroying the mutex

pthread_mutex_init(&mutex, NULL);

for (t = 8; t < nthreads; t++) {
pthread_create(&thread_array[t], NULL, countElems, &thread_args[t]);

for (t = 9; t < nthreads; t++) {
pthread_join(thread_array[t], NULL);
}

pthread_mutex_destroy(&mutex) ;

Counting is correct now

S ./countElems_p_v2 10000000 1 1
Counts array:

9991760 1001644 999908 1000431 999998 1001479 999709 997250 1000804 1000207

$./countElems_p_v2 10000000 1 2
Counts array:

999170 10010644 999908 1000431 999998 1001479 999709 997250 1000804 10002067

S ./countElems_p_v2 10000000 1 4
Counts array:

999170 10010644 999908 1000431 999998 1001479 999709 997250 1000804 1000207

Measuring performance

e More threads consume more time!

S ./countElems_p_v2 100000000 0 1
Time for Step 1 is 0.368126 s

S ./countElems_p_v2 100000000 0 2
Time for Step 1 is 0.438357 s

S ./countElems_p_v2 100000000 0 4
Time for Step 1 is ©0.519913 s

Locked for whole loop

* One thread must complete its loop before another thread can
run

 Makes the program effectively serial

pthread_mutex_lock(&mutex) ;
for (i = start; i < end; i++){
val = array[i];
counts[val] = counts[val] + 1;

}

pthread_mutex_unlock(&mutex) ;

The Mutex: Reloaded

* Only lock for each write operation

for (i = start; i < end; i++) {
val = array[i];
pthread_mutex_lock(&m) ;
counts[val] = counts[val] + 1;
pthread_mutex_unlock(&m);

Operates correctly

S ./countElems_p_v3 10000000 1 1
Counts array:
9991760 1001044 999908 1000431 999998 10601479 999709 997250 1000804 1000207

S ./countElems_p_v3 10000000 1 2
Counts array:
9991760 1001044 999908 1000431 999998 10601479 999709 997250 1000804 1000207

S ./countElems_p_v3 10000000 1 4
Counts array:
9991760 1001044 999908 1000431 999998 10601479 999709 997250 1000804 1000207

Performance

* Locking and unlocking are expensive operations

A lot of time overhead

S ./countElems_p_v3 100000000 0 1
Time for Step 1 is 1.92225 s

S ./countElems_p_v3 100000000 0 2
Time for Step 1 is 10.9704 s

S ./countElems_p_v3 100000000 0 4
Time for Step 1 is 9.13662 s

The Mutex: Revisited

 Each thread has a private local array of counts
* Only uses mutex when adding totals to global counts array

for (i = start; i < end; i++) {
val = array[i];

local_counts[val] = local_counts[val] + 1;

pthread_mutex_lock(&mutex) ;
for (i = 8; i < MAX; i++) {
counts[i] += local_counts|[i];

}

pthread_mutex_unlock(&mutex) ;

Performance

* More threads consume less wall time

S ./countElems_p_v3 100000000 0 1
Time for Step 1 is 0.334574 s

S ./countElems_p_v3 100000000 0 2
Time for Step 1 is 0.209347 s

S ./countElems_p_v3 100000000 0 4
Time for Step 1 is 0.130745 s

Deadlock

* A deadlocked thread is blocked from execution by another
thread, which itself is blocked on a blocked thread

struct account {
pthread_mutex_t lock;
int balance;

b

void *Transfer(void *args){

pthread_mutex_lock(&fromAcct->1lock);
pthread_mutex_lock(&toAcct->1lock) ;

fromAcct->balance -= amt;
toAcct->balance += amt;

pthread_mutex_unlock(&fromAcct->1lock) ;
pthread_mutex_unlock(&toAcct->1lock);

return NULL;

Deadlock Condition

e Thread O sends funds from A to B
e Thread 1 sends funds from B to A

Thread 0 Thread 1
Transfer(..) { Transfer(..) {
//acctA 1s fromAcct acctB 1s fromAcct
//acctB 1s toAcct acctA 1s toAcct
pthread mutex lock(&acctA->lock); pthread mutex lock(&acctB->lock);

Thread 0 gets here Thread 1 gets here

pthread _mutex_ lock(&acctB->lock); pthread mutex_ lock(&acctA->lock);

Figure 1. An example of deadlock

Avoiding deadlock

* Only lock one mutex at a time

void *Transfer(void *args) {

pthread_mutex_lock(&fromAcct->1lock);
fromAcct->balance -= amt;
pthread_mutex_unlock(&fromAcct->1lock) ;

pthread_mutex_lock(&toAcct->lock) ;
toAcct->balance += amt;
pthread_mutex_unlock(&toAcct->1lock);

return NULL;

14.3.2. Semaphores

 Can have many values
 Counting semaphore
* Values: 0 throughr
 Decrements each time a resource IS uses

* When the counting semaphore reaches 0, no more
resources are available

* Any other threads trying to acquire the resource are blocked
* Can be locked by default
* Any thread can unlock a semaphore

* Only the calling thread can unlock a mutex

Using semaphores

* #include <semaphore.h>

 There is no standard; function calls are different on different
systems

 Declaration: sem_t semaphore
* |nitialize: sem_init(&semaphore, 1, 0)

 Parameters: address of semaphore, default state, whether to
share with threads of a process (e.g., with value 0) or
between processes (e.g., with value 1)

* Destroy: sem_destroy(&semaphore)

Using semaphores

* sem_wait function indicates that a resource is being used,
and decrements the semaphore

* Blocks if semaphore reaches zero

 sem_post indicates that a resource is being freed, and
Increments the semaphore

14.3.3. Other Synchronization Constructs

* barrier
* part of the pthreads library

* forces all threads to reach a common point in execution
before releasing the threads to continue executing

 Usage:
* Declare a global variable pthread_barrier_t barrier

* |nitialize in main pthread_barrier_init(&barrier)

* Destroy after use pthread_barrier_destroy(&barrier)

* pthread_barrier_wait function creates a synchronization
point

Barrier example

void *threadEx(void *args){
//parse args
//. ..
long myid = myargs->id;
int nthreads = myargs->numthreads;
int *array = myargs->array

printf("Thread %ld starting thread work!\n", myid);
pthread_barrier_wait(&barrier); //forced synchronization point
printf("All threads have reached the barrier!\n");
for (i = start; i < end; i++) {

array[i] = array[i] * 2;
}
printf("Thread %1ld done with work!\n", myid);

return NULL;

Condition Variables

* part of the pthreads library
* force a thread to block until a particular condition is reached
e always used in conjunction with a mutex

Condition variables

 Usage:
* initialize with pthread_cond_init
* destroy with pthread_cond_destroy
 pthread cond_wait(&cond, &mutex)

e causes the calling thread to block on the condition
variable cond until another thread signals it (or "wakes" it

up)
* pthread_cond_signal(&cond)

e causes the calling thread to unblock (or signal) another
thread that is waiting

Condition variable example

int main(int argc, char **argv)

int num_eqggs,;
pthread_mutex_t mutex;
pthread_cond_t eggs;

num_eggs = 9; |
ret = pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&eggs, NULL);

Condition variable example

e main()
for (i = 0; i < (2 * nthreads); i++) {
if ((1% 2) ==0) {
ret = pthread_create(&thread_array[i], NULL,
chicken, &thread_args[i]);
}
else {
ret = pthread_create(&thread_array[i], NULL,
farmer, &thread_args[i]);
}
h

Condition variable example

e main()

for (i = 0; i < (2 * nthreads); i++) {
ret = pthread_join(thread_array([i], NULL);
}

pthread_mutex_destroy(&mutex) ;
pthread_cond_destroy(&eggs) ;

return 9;

Condition variable example

void *chicken(void *args) {
struct t_arg *myargs = (struct t_arg *)args;
int *num_eggs, 1, num;

num_eggs = myargs->num_eggs;
i=0;

for (i = 0; i < myargs->total_eggs; i++) {
usleep(EGGTIME)J //chicken sleeps

pthread_mutex_lock(myargs->mutex) ;

*num_eggs = *num_eggs + 1; | |

num = *num_eqgqgs;
pthread_cond_signal(myargs->eqgs); // wake a
pthread_mutex_unlock(myargs->mutex) ;

printf("chicken %d created egg %d available %d\n",myargs->id, i, num);

}
return NULL;

Condition variable example

void *farmer(void *args) {
struct t_arg * myargs = (struct t_arg *)args;
int *num_eggs, 1, num;

num_eggs = myargs->num_eggs;

i=0;

for (i = 8; i < myargs->total_eggs; i++) {
pthread_mutex_lock(myargs->mutex) ;

while (*num_eggs == 06) { // no

pthread_cond_wait(myargs->eggs, myargs->mutex);

num = *num_egqgs;
*num_eggs = *num_eqggs - 1;
pthread_mutex_unlock(myargs->mutex) ;

printf("farmer %d gathered egg %d available %d\n",myargs->id, i, num);

}
return NULL;

Broadcasting

 pthread _cond_broadcast(&cond)
* wakes up all threads that are blocked on condition cond

pthread_mutex_lock(&mutex) ;
*n_reached++;

printf("Thread %1ld starting work!\n", myid)
while (*n_reached < nthreads) {
pthread_cond_wait(&barrier, &mutex);

}

printf("all threads have reached the barrier!\n");
pthread_cond_broadcast(&barrier);

pthread_mutex_unlock(&mutex) ;

