
Sam Bowne Updated Apr 30, 2025

14. Leveraging Shared Memory in the
Multicore Era

For COMSC 142

• https://diveintosystems.org/book/index.html

Free online textbook

Ch 14a:

14.1. Programming Multicore Systems

14.2. POSIX Threads

14.3. Synchronizing Threads

Ch 14b:

14.4. Measuring Parallel Performance

14.5. Cache Coherence

14.6. Thread Safety

14.7. Implicit Threading with OpenMP

Topics

14.4. Measuring Parallel
Performance

Topics

• Speedup

• Efficiency

• Amdahl’s Law

• Gustafson-Barsis Law

• Scalability

• Compare the time a program takes to execute on one core to
the time on c cores

• If a serial program takes 60 seconds to execute,

• while its parallel version takes 30 seconds on 2 cores,

• the corresponding speedup is 2.

Speedup

Efficiency

• If a serial program takes 60 seconds, but a parallel program
takes 30 seconds on two cores

• Efficiency is 1

• If a serial program takes 60 seconds, but a parallel program
takes 30 seconds on four cores

• Efficiency is 0.5

Parallel Performance in the Real World

• Most programs contain a necessarily serial component that
exists due to inherent dependencies in the code.

• The longest set of dependencies in a program is referred to as
its critical path.

• Not all programs are good candidates for parallelism!

• The length of the critical path can make some programs

downright hard to parallelize.

• As an example, consider the problem of generating the

_n_th Fibonacci number.

Parallelization of the countElems function

Amdahl’s Law

• S is the fraction of a program that is inherently serial

• P is the fraction of a program that can be parallelized

• The maximum improvement is:

Example

• Program is 90% parallelizable and executes in 10 seconds on
1 core

Gustafson-Barsis Law

• Amdahl used a fixed problem size and added cores

• Gustafson-Barsis assume that the problem grows as cores are

added

• With time being constant

• So you can always get more work done with more processors

• Even for the serial portion of the work

Scalability

• A program is scalable
• If adding cores improves performance

• Strongly scalable
• If adding cores improves performance at a fixed problem

size

• Weakly scalable
• If adding cores and also increasing the problem size in

proportion improves performance

General Advice Regarding Measuring Performance

• Run a program multiple times when benchmarking.

• Be careful where you measure timing.

• Be aware of the impact of hyperthreaded cores

• They may have more resource contention than physical

cores

• Beware of resource contention

• Other processes may slow the one you are testing

14.5. Cache Coherence

Cache Design

• Data/instructions are not transported individually to the cache.

• Instead, data is transferred in blocks, and block sizes tend

to get larger at lower levels of the memory hierarchy.

• Each cache is organized into a series of sets, with each set

having a number of lines.

• Each line holds a single block of data.

• A cache hit occurs when the desired data block exists in the
cache.

• Otherwise, a cache miss occurs, and a lookup is performed
on the next lower level of the memory hierarchy (which can be
cache or main memory).

Cache Design

• The valid bit indicates if a block at a particular line in the
cache is safe to use.

• Information is written to cache/memory based on two main
strategies.

• In the write-through strategy, the data is written to cache

and main memory simultaneously.

• In the write-back strategy, data is written only to cache and

gets written to lower levels in the hierarchy after the block is
evicted from the cache.

14.5.1. Caches on Multicore Systems
• Without a cache coherence strategy to ensure that each

cache maintains a consistent view of shared memory, it is
possible for shared variables to be updated inconsistently.

MSI protocol

• Modified Shared Invalid (MSI) protocol

• an invalidating cache coherency protocol

• A common technique for implementing MSI is snooping.

• “snoops" on the memory bus for possible write signals

• If the snoopy cache detects a write to a shared cache block,

it invalidates its line containing that cache block.

14.5.2. False Sharing

• This attempt to parallelize the
countElems function is
inaccurate

• Because of data races

affecting the counts array

• But it also gets slower when

more cores are added

Li cache size

False sharing

• The cache is invalidated each time any process writes to the
count array

• repeated invalidation and overwriting of lines from the L1
cache is an example of thrashing

• The code gives the illusion of sharing the elements among the
cores: false sharing

14.5.3. Fixing False Sharing

• One way is to pad the array (in our case counts) with additional
elements so that it doesn’t fit in a single cache line

• A better solution is to have threads write to local
storage whenever possible.

14.6. Thread Safety

Safety and re-entrancy

• Thread safe functions

• capable of being run by multiple threads while guaranteeing

a correct result without unintended side effects

• Not all C library functions are thread safe

• A function is re-entrant if it can be re-executed/partially
executed by a function without causing issue

• ensures that accesses to the global state of a program

always result in that global state remaining consistent

Thread-unsafe functions

• https://pubs.opengroup.org/onlinepubs/009695399/functions/
xsh_chap02_09.html

14.6.1. Fixing Issues of Thread Safety

• countElemsStr parses a string using strtok()

Multithreaded  
version
• strtok() is not

thread-safe

• Replace with

strtok_r()

14.7. Implicit Threading
with OpenMP

14.7. Implicit Threading with OpenMP

• Pthreads are great for simple applications

• they become increasingly difficult to use as programs

themselves become more complex

• POSIX threads are an example of explicit parallel

programming of threads, requiring a programmer to specify
exactly what each thread is required to do and when each
thread should start and stop.

• The Open Multiprocessing (OpenMP) library implements
an implicit alternative to Pthreads.

• Programmers parallelize components of existing, sequential C
code by adding pragmas (special compiler directives) to parts
of the code

• Starting with #pragma omp

14.7.1. Common Pragmas

• #pragma omp parallel
• creates a team of threads, with these clauses

• num_threads

• private variables that are local to each thread

• shared lists variables that should be shared

• default indicates whether the determination of which

variables should be shared is left up to the compiler.

• In most cases, we want to use default(none)

14.7.1. Common Pragmas

• #pragma omp for
• each thread executes a subset of iterations of a for loop

• #pragma omp parallel for
• creates a team of threads, then executes a for loop

• #pragma omp critical
• This code is a critical section—only one thread should

execute this code at a time

Functions

• There are also several functions that a thread can access that
are often useful for execution. For example:

• omp_get_num_threads
• returns the number of threads in the current team that is

being executed.

• omp_set_num_threads
• sets the number of threads that a team should have.

• omp_get_thread_num
• returns the identifier of the calling thread.

14.7.2. Hello Threading: OpenMP flavored

14.7.3. A More Complex Example: CountSort in OpenMP

• The important code in main()

Parallelizing CountElems Using OpenMP

Results

• Almost linear speedup!

Ch14b

