14. Leveraging Shared Memory in the
Multicore Era

For COMSC 142

Sam Bowne Updated Apr 30, 2025

Free online textbook

#{ Dive into Systems :: Div

@ diveintosystems.org/book/index.html

Dive Into Systems

f

Dive into Systems

Contents
Authors

Book Version

Authors

Suzanne J. Matthews, Ph.D. — West Point
suzanne.matthews@westpoint.edu

Tia Newhall, Ph.D. — Swarthmore College
newhall@cs.swarthmore.edu

Kevin C. Webb, Ph.D. — Swarthmore College
kwebb@cs.swarthmore.edu

 https://diveintosystems.org/book/index.html

Topics

Ch 14a:
14.1. Programming Multicore Systems
14.2. POSIX Threads
14.3. Synchronizing Threads
Ch 14Db:
14.4. Measuring Parallel Performance
14.5. Cache Coherence
14.6. Thread Safety
14.7. Implicit Threading with OpenMP

14.4. Measuring Parallel
Performance

Topics

e Speedup

» Efficiency

« Amdahl’s Law

* Gustafson-Barsis Law
e Scalability

Speedup

 Compare the time a program takes to execute on one core to
the time on ¢ cores

Speedup, = 7

C

 If a serial program takes 60 seconds to execute,
* while its parallel version takes 30 seconds on 2 cores,
* the corresponding speedup is 2.

Efficiency

. 17 Speedup,
Ef ficiency,. = —
T(. X C C

 |f a serial program takes 60 seconds, but a parallel program
takes 30 seconds on two cores

* Efficiency is 1

 |If a serial program takes 60 seconds, but a parallel program
takes 30 seconds on four cores

» Efficiency is 0.5

Parallel Performance in the Real World

 Most programs contain a necessarily serial component that
exists due to inherent dependencies in the code.

* The longest set of dependencies in a program is referred to as
its critical path.

* Not all programs are good candidates for parallelism!

* The length of the critical path can make some programs
downright hard to parallelize.

* As an example, consider the problem of generating the
_n_th Fibonacci number.

Parallelization of the countElems function

S ./countElems_p_v3 100000000 0 1
Time for Step 1 is 0.331831 s

S ./countElems_p_v3 100000000 0 2
Time for Step 1 is 0.197245 s

S ./countElems_p_v3 100000000 0 4
Time for Step 1 is 0.140642 s

S ./countElems_p_v3 100000000 0 8
Time for Step 1 is 0.107649 s

Table 1. Performance Benchmarks

Number of 2 4 8
threads
Speedup 1.68 2.36 3.08

Efficiency 0.84 0.59 0.39

Amdahl’s Law

e S is the fraction of a program that is inherently serial
* P is the fraction of a program that can be parallelized

 The maximum improvement is:

P
'TC:SX'Tl—F—X'Tl

C

Example

* Program is 90% parallelizable and executes in 10 seconds on
1 core

Number of Serial time Parallel time Total Time Speedup

cores (s) (s) (Tcs) (over one
core)

L 1 9 10 1

10 1 0.9 1.9 5.26

100 1 0.09 1.09 9.17

1000 1 0.009 1.009 9.91

Gustafson-Barsis Law

 Amdahl used a fixed problem size and added cores

* Gustafson-Barsis assume that the problem grows as cores are
added

* With time being constant

* S0 you can always get more work done with more processors
* Even for the serial portion of the work

Scalability

* A program is scalable
 |f adding cores improves performance
* Strongly scalable

 |f adding cores improves performance at a fixed problem
size

 Weakly scalable

 |f adding cores and also increasing the problem size Iin
proportion improves performance

General Advice Regarding Measuring Performance

 Run a program multiple times when benchmarking.
* Be careful where you measure timing.
 Be aware of the impact of hyperthreaded cores

 They may have more resource contention than physical
cores

e Beware of resource contention

e Other processes may slow the one you are testing

14.5. Cache Coherence

Cache Design

« Data/instructions are not transported individually to the cache.

* |nstead, data is transferred in blocks, and block sizes tend
to get larger at lower levels of the memory hierarchy.

 Each cache is organized into a series of sets, with each set
having a number of lines.

* Each line holds a single block of data.

e A cache hit occurs when the desired data block exists in the
cache.

* Otherwise, a cache miss occurs, and a lookup is performed
on the next lower level of the memory hierarchy (which can be
cache or main memory).

Cache Design

* The valid bit indicates if a block at a particular line in the
cache is safe to use.

* Information is written to cache/memory based on two main
strategies.

* In the write-through strategy, the data is written to cache
and main memory simultaneously.

* In the write-back strategy, data is written only to cache and
gets written to lower levels in the hierarchy after the block is
evicted from the cache.

14.5.1. Caches on Multicore Systems

* Without a cache coherence strategy to ensure that each
cache maintains a consistent view of shared memory, it is
possible for shared variables to be updated inconsistently.

Core O Core 1
X:5 g: y: 60 g: 10
L1 cache L1 cache
Time Core 0 Core 1
0 g=35 (other work) E
1 (other work) y = g*4 |2 cache g: 10
: e yea CPU lBus to Memory

MSI protocol

* Modified Shared Invalid (MSI) protocol
e an invalidating cache coherency protocol

A common technique for implementing MSI is shooping.
e “snoops” on the memory bus for possible write signals

 |If the snoopy cache detects a write to a shared cache block,
it invalidates its line containing that cache block.

14.5.2. False Sharing

* This attempt to parallelize the void *countElems(void *args){
countElems function is - |

Inaccurate |
int *array = myargs->ap;

* Because Of data races long *counts = myargs->countp;

affecting the counts array

e But it also gets slower when
more cores are added

long 1i;
S ./countElems_p 100000000 0 1

Time for Step 1 is 0.336239 s for (i = start; i < end; i++){

val = array[i];

S ./countElems_p 100000000 O 2 cermalledl] = eevmraleell @ T

Time for Step 1 is 0.799464 s

S ./countElems_p 100000000 0 4
Time for Step 1 is 0.767003 s

return NULL;

Li cache size

S cat /sys/devices/system/cpu/cpu@/cache/coherency_line_size

Time

i+1

i+2

i+3

i+4

i+5

Thread 0
Reads array(x] (1)

Increments counts[1] (invali-
dates cache line)

Reads array|[x] (6)

Increments counts[6] (invali-
dates cache line)

Reads array[x] (3)

Increments counts[3] (invali-
dates cache line)

Table 2. A Possible Execution Sequence of Two Threads Running countElems

Thread 1

Reads array[x] (4)

Increments counts(4] (invali-
dates cache line)

Reads array|x] (2)

Increments counts([2] (invali-
dates cache line)

False sharing

 The cache is invalidated each time any process writes to the
count array

* repeated invalidation and overwriting of lines from the L1
cache is an example of thrashing

 The code gives the illusion of sharing the elements among the
cores: false sharing

14.5.3. Fixing False Sharing

 One way is to pad the array (in our case counts) with additional
elements so that it doesn'’t fit in a single cache line

e A better solution is to have threads write to local
storage whenever possible.

for (i = start; i < end; i++){
val = array[i];
local_counts[val] = local_counts|[val] + 1;

pthread_mutex_lock(&mutex) ;
for (i = 0; i < MAX; i++){
counts[i] += local_counts[i];

}

pthread_mutex_unlock(&mutex) ;

14.6. Thread Safety

Safety and re-entrancy

e Thread safe functions

e capable of being run by multiple threads while guaranteeing
a correct result without unintended side effects

* Not all C library functions are thread safe

* A function is re-entrant if it can be re-executed/partially
executed by a function without causing issue

e ensures that accesses to the global state of a program
always result in that global state remaining consistent

Thread-unsafe functions

asctime(). ecvt() gethostent() getutxline() putc unlocked()
basename() encrypt(). getiogin() gmtime() putchar unlocked()
catgets() endgrent() getnetbyaddr() hcreate() putenv(),
crypt() endpwent() getnetbyname(). hdestroy() pututxline()
ctime(), endutxent() getnetent() hsearch() rand()

dbm clearerr() fcvt() getopt(). inet ntoa() readdir()

dbm close() ftw() getprotobyname() 164a() setenv()

dbm delete() gcvt() getprotobynumber() Igamma() setgrent()

dbm error() getc unlocked() getprotoent() Ilgammaf() setkey()

dbm fetch() getchar unlocked() getpwent() Ilgammal() setpwent()
dbm firstkey() getdate() getpwnam() localeconv() setutxent()
dbm nextkey() getenv() getpwuid() localtime() strerror()

dbm open() getgrent() getservbyname() Irand48() strtok()

dbm store() getgrgid() getservbyport() mrand48() ttyname()
dirname(), getgrnam() getservent() nftw() unsetenv()
dlerror() gethostbyaddr(), getutxent() nl_langinfo() wcstombs()
drand48(). gethostbyname() getutxid() ptsname() wctomb()

* https://pubs.opengroup.org/onlinepubs/009695399/functions/
xsh_chap02_09.html

14.6.1. Fixing Issues of Thread Safety

* countElemsStr parses a string using strtok()

void countElemsStr(int *counts, char *input_str) {
int val, 1i;
char *token;
token = strtok(input_str, " ");
while (token !'= NULL) {
val = atoi(token);
counts[val] = counts[val] + 1;
token = strtok(NULL, " ");

S ./countElemsStr 100000 1

contents of counts array:
9963 9975 9953 10121 100858 10817 100653 9965 9915 10046

Multithreaded ite (e 1oy

version

e strtok() is not
thread-safe

 Replace with
strtok r()

val = atoi(token); //convert

token = strtok(NULL, " ");

pthread_mutex_lock(&mutex) ;
for (i = 8; i < MAX; i++) {
counts[i] += local_counts[i];

}

pthread_mutex_unlock(&mutex) ;

")

to an 1nt

local_counts[val] = local_counts[val] + 1;

S ./countElemsStr_p 100000 1 1
contents of counts array:
9963 9975 9953 106121 10058 108017 10053 9965

S ./countElemsStr_p 100000 1 2
contents of counts array:
498 459 456 450 456 471 446 462 450 463

S ./countElemsStr_p 100000 1 4
contents of counts array:

9915 10040

5038 4988 4985 5042 5056 5013 56025 5635 4968 56065

14.7. Implicit Threading
with OpenMP

14.7. Implicit Threading with OpenMP

* Pthreads are great for simple applications

* they become increasingly difficult to use as programs
themselves become more complex

 POSIX threads are an example of explicit parallel
programming of threads, requiring a programmer to specify
exactly what each thread is required to do and when each
thread should start and stop.

 The Open Multiprocessing (OpenMP) library implements
an implicit alternative to Pthreads.

 Programmers parallelize components of existing, sequential C
code by adding pragmas (special compiler directives) to parts
of the code

e Starting with #pragma omp

14.7.1. Common Pragmas

 #pragma omp parallel

e creates a team of threads, with these clauses

num threads
private variables that are local to each thread
shared lists variables that should be shared

default indicates whether the determination of which
variables should be shared is left up to the compililer.

* |n most cases, we want to use default(none)

14.7.1. Common Pragmas

 #pragma omp for

e each thread executes a subset of iterations of a for loop
 #pragma omp parallel for

e creates a team of threads, then executes a for loop
* #pragma omp critical

 This code is a critical section—only one thread should
execute this code at a time

Functions

e There are also several functions that a thread can access that
are often useful for execution. For example:

e omp_get_num_threads

e returns the number of threads in the current team that is
being executed.

e omp_set num_threads

e sets the number of threads that a team should have.
e omp_get_thread_num

* returns the identifier of the calling thread.

14.7.2. Hello Threading: OpenMP flavored

void HelloWorld(void) {
long myid = omp_get_thread_num();
printf("Hello world! I am thread %ld\n", myid);

nthreads = strtol(argv[1], NULL, 10);

S gcc -0 hello_mp hello_mp.c -fopenmp

$./hello_mp 4

Hello world! I am thread 2
Hello world! I am thread 3
Hello world! I am thread @
Hello world! I am thread 1

14.7.3. A More Complex Example: CountSort in OpenMP

 The important code in main()

int counts[MAX] = {@};

countElems(counts, array, length);
writeArray(counts, array);

Parallelizing CountElems Using OpenMP

void countElems(int *counts, int *array, long length) {
{
int val, i, local[MAX] = {@};
for (i = ©; i < length; i++) {
val = array[i];
local[val]++;
}
{
for (i = @; i < MAX; i++) {
counts[i] += localli];
y
}
}
}

Results

* Almost linear speedup!

S ./countElems_mp 100000000 1
Run Time for Phase 1 is 0.249893

S ./countElems_mp 100000000 2
Run Time for Phase 1 is 0.124462

S ./countElems_mp 100000000 4
Run Time for Phase 1 is 0.0668749

