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14.4. Measuring Parallel 
Performance



Topics

• Speedup

• Efficiency

• Amdahl’s Law

• Gustafson-Barsis Law

• Scalability



• Compare the time a program takes to execute on one core to 
the time on c cores


• If a serial program takes 60 seconds to execute, 

• while its parallel version takes 30 seconds on 2 cores, 

• the corresponding speedup is 2.

Speedup



Efficiency

• If a serial program takes 60 seconds, but a parallel program 
takes 30 seconds on two cores

• Efficiency is 1


• If a serial program takes 60 seconds, but a parallel program 
takes 30 seconds on four cores

• Efficiency is 0.5



Parallel Performance in the Real World

• Most programs contain a necessarily serial component that 
exists due to inherent dependencies in the code. 


• The longest set of dependencies in a program is referred to as 
its critical path. 


• Not all programs are good candidates for parallelism!

• The length of the critical path can make some programs 

downright hard to parallelize.

• As an example, consider the problem of generating the 

_n_th Fibonacci number. 



Parallelization of the countElems function



Amdahl’s Law

• S is the fraction of a program that is inherently serial

• P is the fraction of a program that can be parallelized

• The maximum improvement is:



Example

• Program is 90% parallelizable and executes in 10 seconds on 
1 core



Gustafson-Barsis Law

• Amdahl used a fixed problem size and added cores

• Gustafson-Barsis assume that the problem grows as cores are 

added

• With time being constant


• So you can always get more work done with more processors

• Even for the serial portion of the work



Scalability

• A program is scalable 
• If adding cores improves performance


• Strongly scalable 
• If adding cores improves performance at a fixed problem 

size 

• Weakly scalable 
• If adding cores and also increasing the problem size in 

proportion improves performance



General Advice Regarding Measuring Performance

• Run a program multiple times when benchmarking.

• Be careful where you measure timing.

• Be aware of the impact of hyperthreaded cores

• They may have more resource contention than physical 

cores

• Beware of resource contention

• Other processes may slow the one you are testing



14.5. Cache Coherence



Cache Design

• Data/instructions are not transported individually to the cache.

• Instead, data is transferred in blocks, and block sizes tend 

to get larger at lower levels of the memory hierarchy.

• Each cache is organized into a series of sets, with each set 

having a number of lines. 

• Each line holds a single block of data.


• A cache hit occurs when the desired data block exists in the 
cache. 


• Otherwise, a cache miss occurs, and a lookup is performed 
on the next lower level of the memory hierarchy (which can be 
cache or main memory).



Cache Design

• The valid bit indicates if a block at a particular line in the 
cache is safe to use. 


• Information is written to cache/memory based on two main 
strategies. 

• In the write-through strategy, the data is written to cache 

and main memory simultaneously. 

• In the write-back strategy, data is written only to cache and 

gets written to lower levels in the hierarchy after the block is 
evicted from the cache.



14.5.1. Caches on Multicore Systems
• Without a cache coherence strategy to ensure that each 

cache maintains a consistent view of shared memory, it is 
possible for shared variables to be updated inconsistently. 



MSI protocol

• Modified Shared Invalid (MSI) protocol 

• an invalidating cache coherency protocol


• A common technique for implementing MSI is snooping.

• “snoops" on the memory bus for possible write signals

• If the snoopy cache detects a write to a shared cache block, 

it invalidates its line containing that cache block.



14.5.2. False Sharing

• This attempt to parallelize the 
countElems function is 
inaccurate 

• Because of data races 

affecting the counts array

• But it also gets slower when 

more cores are added



Li cache size



False sharing

• The cache is invalidated each time any process writes to the 
count array


• repeated invalidation and overwriting of lines from the L1 
cache is an example of thrashing 

• The code gives the illusion of sharing the elements among the 
cores: false sharing



14.5.3. Fixing False Sharing

• One way is to pad the array (in our case counts) with additional 
elements so that it doesn’t fit in a single cache line


• A better solution is to have threads write to local 
storage whenever possible.



14.6. Thread Safety



Safety and re-entrancy

• Thread safe functions

• capable of being run by multiple threads while guaranteeing 

a correct result without unintended side effects

• Not all C library functions are thread safe


• A function is re-entrant if it can be re-executed/partially 
executed by a function without causing issue

• ensures that accesses to the global state of a program 

always result in that global state remaining consistent



Thread-unsafe functions

• https://pubs.opengroup.org/onlinepubs/009695399/functions/
xsh_chap02_09.html



14.6.1. Fixing Issues of Thread Safety

• countElemsStr parses a string using strtok()



Multithreaded  
version
• strtok() is not 

thread-safe

• Replace with 

strtok_r()



14.7. Implicit Threading 
with OpenMP



14.7. Implicit Threading with OpenMP

• Pthreads are great for simple applications

• they become increasingly difficult to use as programs 

themselves become more complex

• POSIX threads are an example of explicit parallel 

programming of threads, requiring a programmer to specify 
exactly what each thread is required to do and when each 
thread should start and stop.


• The Open Multiprocessing (OpenMP) library implements 
an implicit alternative to Pthreads.


• Programmers parallelize components of existing, sequential C 
code by adding pragmas (special compiler directives) to parts 
of the code

• Starting with #pragma omp



14.7.1. Common Pragmas

• #pragma omp parallel 
•  creates a team of threads, with these clauses

• num_threads 

• private variables that are local to each thread

• shared lists variables that should be shared 

• default indicates whether the determination of which 

variables should be shared is left up to the compiler. 

• In most cases, we want to use default(none) 



14.7.1. Common Pragmas

• #pragma omp for 
•  each thread executes a subset of iterations of a for loop


• #pragma omp parallel for 
•  creates a team of threads, then executes a for loop 


• #pragma omp critical 
•  This code is a critical section—only one thread should 

execute this code at a time 



Functions

• There are also several functions that a thread can access that 
are often useful for execution. For example:

• omp_get_num_threads 
• returns the number of threads in the current team that is 

being executed.

• omp_set_num_threads 
• sets the number of threads that a team should have.


• omp_get_thread_num 
• returns the identifier of the calling thread.



14.7.2. Hello Threading: OpenMP flavored



14.7.3. A More Complex Example: CountSort in OpenMP

• The important code in main()



Parallelizing CountElems Using OpenMP



Results

• Almost linear speedup!



Ch14b


