
Sam Bowne May 1, 2025

15. Looking Ahead: Other Parallel Systems
and Parallel Programming Models

For COMSC 142

• https://diveintosystems.org/book/index.html

Free online textbook

15.1. Hardware Acceleration and CUDA

15.2. Distributed Memory Systems

15.3. To Exascale and Beyond

Topics

Flynn’s Taxonomy of Architecture

• SISD: Single instruction/
single data

• MISD: Multiple
instruction/single data

• SIMD: Single
instruction/multiple data

• MIMD: Multiple
instruction/multiple
data

Flynn’s Taxonomy of Architecture
• SISD: Single instruction/single data

• a single control unit processing a single stream of

instructions

• most processors prior to the mid-2000s were SISD

machines

• MISD: Multiple instruction/single data

• rarely used anymore

• SIMD: Single instruction/multiple data

• GPUs

• MIMD: Multiple instruction/multiple data

• Modern multicore CPUs

15.1. Hardware
Acceleration and CUDA

15.1. Heterogeneous Computing: Hardware Accelerators,
GPGPU Computing, and CUDA

• Heterogeneous computing
• computing using multiple, different processing units

• These processing units often have different ISAs (Instruction
Set Architectures), some managed by the OS, and others not

• Typically, heterogeneous computing means support for parallel
computing using the computer’s CPU cores and one or more
of its accelerator units such as

• Graphics Processing Units (GPUs) or

• Field Programmable Gate Arrays (FPGAs)

15.1.1. Hardware Accelerators

• FPGA
• reprogrammable, meaning that they can be reconfigured to

implement specific functionality in hardware

• often used to prototype application-specific integrated

circuits (ASICs)
• typically require less power to run than a full CPU

• May be used for

• device controllers, for sensor data processing, for

cryptography, and for testing new hardware designs

15.1.1. Hardware Accelerators

• Cell Processors
• a multicore processor consisting of one general-purpose

processor and multiple co-processors

• Sony PlayStation 3 was the first Cell architecture

• GPUs
• perform computer graphics computations

• writes to a frame buffer, which delivers the data to the

computer’s display

15.1.2. GPU architecture overview

• Single Instruction/Multiple Thread (SIMT)

• SM: Streaming
Multiprocessor

• SP: Scalar
Processor

• Warp scheduler

• Warp: a set of

threads

• The threads all

execute the
same
instructions in
lockstep, on
different data

15.1.3. GPGPU Computing

• Applies special-purpose GPU processors to general-purpose
parallel computing tasks

• Combines computation on the host CPU cores with SIMT
computation on the GPU

• The host operating system does not manage the GPU’s
processors or memory

• CUDA library functions to explicitly allocate CUDA memory on
the GPU and to copy data between CUDA memory on the
GPU and host memory

15.1.4. CUDA

• CUDA (Compute Unified Device Architecture)
• NVIDIA’s programming interface for GPGPU computing

• CUDA kernel function
• runs on the GPU

• annotated with global to distinguish them from host

functions

• CUDA thread
• basic unit of execution in a CUDA program

• scheduled in warps

CUDA memory functions

Blocks and Grid

• CUDA threads are organized into blocks, and the blocks are
organized into a grid

• Grids can be organized into one-, two-, or three-dimensional
groupings of blocks

• Each thread is uniquely identified by its thread (x, y, z) position
in its containing block’s (x, y, z) position in the grid

• Call a kernel function, passing parameters

Blocks and Grid

Example CUDA Program: Scalar Multiply

CUDA Thread Scheduling and Synchronization

• All threads in a warp execute the same set of instructions in
lockstep

• CUDA guarantees that all threads from a single kernel call
complete before any threads from a subsequent kernel call are
scheduled

15.1.5. Other Languages for GPGPU Programming

• OpenCL, OpenACC, and OpenHMPP are three examples of
languages that can be used to program any graphics device
(they are not specific to NVIDIA devices)

• OpenCL (Open Computing Language)
• similar programming model to CUDA’s

• targets a wide range of heterogeneous computing platforms

that include a host CPU combined with other compute units

• could include CPUs or accelerators such as GPUs and

FPGAs

15.1.5. Other Languages for GPGPU Programming

• OpenACC (Open Accelerator)
• a higher-level abstraction programming model than CUDA or

OpenCL

• programmer annotates portions of their code for parallel

execution

• the compiler generates parallel code that can run on GPUs

• OpenHMPP (Open Hybrid Multicore Programming)
• another language that provides a higher-level programming

abstraction for heterogeneous programming

Ch 15a

15.2. Distributed
Memory Systems

• Distributed Memory System
• or Distributed System

• A collection of computers working together

• distributed systems include:

• Supercomputer
• Commodity Off-The-Shelf (COTS) cluster

15.2. Distributed Memory Systems, Message Passing, and
MPI

• Many compute nodes are tightly coupled to a fast
interconnection network

• Each compute node contains its own CPU(s), GPU(s), and
memory

• Multiple nodes might share auxiliary resources like secondary
storage and power supplies

Supercomputer

Commodity Off-The-Shelf (COTS) cluster
• Typically employ a shared-nothing architecture

• each node contains its own set of computation hardware

(CPU(s), GPU(s), memory, and storage)

15.2.1. Parallel and Distributed Processing Models

• Client/Server

• Pipeline

• Boss/Worker

• Peer-to-Peer

Client/Server

• Extremely common model

• Example: Web server and browser clients

• Server process provides a service to clients that ask for

something to be done

• Server process waits at well-known address

• to receive incoming connections from clients

• replies to requests with either a satisfactory response or an

error message

Pipeline

• Divides an application into a distinct sequence of steps

• each of which can process data independently

• parallel processes operate on distinct data elements

• Example: producing computer-animated films

• many frames, each of which needs similar processing

• adding textures or applying lighting

Boss/Worker

• Boss process

• acts as a central coordinator

• distributes work among the processes at other nodes

• Works well for problems that require processing a large,
divisible input

• such as password cracking

• each worker gets a subset of the list of possible passwords

Peer-to-Peer

• No centralized control process

• Peer processes self-organize the application into a structure

• in which they each take on roughly the same responsibilities

• Example: BitTorrent file sharing

• each peer repeatedly exchanges parts of a file with others

until they’ve all received the entire file

• Peer-to-peer applications are generally robust to node failures

• They typically require complex coordination algorithms,

making them difficult to build and rigorously test

15.2.2. Communication Protocols

• Processes in a distributed memory system communicate
via message passing
• one process explicitly sends a message to processes on

one or more other nodes

• Some applications require frequent communication

• to tightly coordinate the behavior of processes across many

nodes

• Other applications communicate to divide up a large input

among processes

• and then mostly work independently

• A distributed application formalizes its communication
expectations by defining a communication protocol,
specifying:

• When a process should send a message

• To which process(es) it should send the message

• How to format the message

• Without a protocol, an application might fail to interpret
messages properly or even deadlock
• two processes: each waiting for the other to send it a

message

• neither process will ever make progress

15.2.2. Communication Protocols

15.2.3. Message Passing Interface (MPI)

• Defines a standardized interface to communicate in a
distributed memory system

• By adopting the MPI communication standard, applications
become portable
• can be compiled and executed on many different systems

• Allows a programmer to divide an application into multiple
processes

• each process has a rank number

• ranges from 0 to N-1 for an application with N processes

• MPI_Comm_rank
• finds a process’s rank number

• MPI_Comm_size
• finds how many processes are executing

• MPI_Send

• sends a message

• MPI_Recv

• receives a message

MPI functions

• MPI_Bcast
• one process sends a message to every other process

• MPI_Scatter
• divides up an array and distributes the pieces among

processes

• MPI_Gather
• retrieves all the data to coalesce the results

MPI functions

15.2.4. MPI Hello World

Running MPI Code

• The mpirun command needs to be told

• which computers to run processes on (--hostfile)

• how many processes to run at each machine (-np)

• Here, hosts.txt says to create four processes across two

computers, one named lemon, and another named orange

15.2.5. MPI Scalar Multiplication

• Scalar multiplication on an array

• using the boss/worker model 

• MPI Communication
• boss sends the scalar value and the size of the array to the

workers

• boss divides the initial array into pieces and sends a piece to

each worker

• each worker multiplies the values in its piece of the array by

the scalar and then sends the updated values back to the
boss

Broadcasting Important Values

• Every process executes MPI_Bcast
• but it behaves differently depending on the rank of the

calling process

• if the rank matches that of the fourth argument, the caller

assumes the role of the sender

• All other processes that call MPI_Bcast act as receivers

Distributing the Array

Aggregating Results

Scatter/Gather

• A simplified, easier procedure than the for loops in the
previous two slides

15.2.6. Distributed Systems Challenges

• What if a node fails?

• What if the network fails?

• Nodes don’t share a clock

• Network delays may vary

15.3. To Exascale and
Beyond

High-Performance Computing (HPC)

• Applications written in languages like C, C++, or Fortran
• with multithreading and message passing enabled

• with libraries such as POSIX threads, OpenMP, and MPI

• High-end Data Analysis (HDA) systems

• process a deluge internet-based user data for companies

like

• Amazon, Google, Microsoft, and Facebook

HDA v. HPC
• HPC uses supercomputers

• HDA uses data centers

15.3.1. Cloud Computing

• Three pillars

• Software as a Service (SaaS)
• Infrastructure as a Service (IaaS)
• Platform as a Service (PaaS)

Software as a Service (SaaS)

• Users access software in the cloud

• Example: Gmail

• Organizations can rent service

• Services are managed completely by cloud providers

• Users don’t need to purchase or maintain servers

Infrastructure as a Service (IaaS)

• Users rent virtual machines in the cloud

• either general purpose or preconfigured for a particular

application

• Example: Amazon’s Elastic Compute Cloud (EC2)

• Users must configure applications, data, and in some cases

the virtual machine’s OS itself

Platform as a Service (PaaS)

• Users develop and deploy their own web applications for the
cloud

• PaaS provides a variety of languages APIs

• Examples:

• Microsoft Azure

• Google App Engine

• Heroku

• CloudBees

15.3.2. MapReduce
• Based on the mathematical operations of Map and Reduce

from functional programming

• The Map operation applies the same function to all the

elements in a collection

• as in Python’s list comprehension

• Reduce combines the elements, such as with sum()

The MapReduce Programming Model

• Map function

• written by the programmer

• takes an input (key, value) pair and outputs a series of

intermediate (key, value) pairs

• written to a distributed filesystem shared among all the

nodes

• Combiner
• defined by the MapReduce framework

• aggregates (key, value) pairs by key, to produce  

(key, list(value)) pairs

• Reduce
• written by the programmer

• combines all the values to form final (key, value)

• written to the distributed filesystem and output to the user

Word Frequency program

• Determines the frequency of each word in a large text corpus

Word Frequency program

Word Frequency program

Fault Tolerance

• MapReduce was designed with fault tolerance in mind

• For any MapReduce run, there is one boss node and

potentially thousands of worker nodes

• The chance that a worker node will fail is therefore high

• To remedy this, the boss node pings individual worker nodes

periodically

• If the boss node does not receive a response from a worker

node, the boss redistributes the worker’s assigned workload
to a different node and re-executes the task

Hadoop and Apache Spark

• Google’s implementation of MapReduce is closed source

• Yahoo! developed Hadoop, an open source implementation of

MapReduce

• later adopted by the Apache Foundation

• Hadoop project consists of an ecosystem of tools

• Hadoop Distributed File System or HDFS

• an open source alternative to Google File System

• HBase

• modeled after Google’s BigTable

Hadoop and Apache Spark

• Hadoop limitations:

• it is difficult to chain multiple MapReduce jobs together into

a larger workflow

• writing of intermediates to the HDFS proves to be a

bottleneck, especially for small jobs (smaller than one
gigabyte)

• Apache Spark was designed to address these issues, among
others.

• up to 100 times faster than Hadoop on some applications

15.3.3. Looking Toward the Future: Opportunities and
Challenges

• Centralized computing

• new data is produced in edge environments
• near sensors and other data-generating instruments

• on the other end of the network from commercial cloud

providers and HPC systems

• scientists and practitioners gather data

• analyze it using a local cluster, or

• move it to a supercomputer or data center for analysis

• This centralized computing is no longer a viable strategy as
improvements in sensor technology have exacerbated the data
deluge

• Including Internet of Things (IoT) devices

Big Data

• Aggressively summarize data at each transfer point between
the edge and the cloud

• Infrastructure capable of processing, storing, and summarizing
data in edge environments in a unified platform

• Edge (or fog) computing
• Flips the traditional analysis model of Big Data

• instead of analysis occurring at the supercomputer or data

center ("last mile”)

• analysis occurs at the source of data production ("first mile")

Convergence

• Converge the HPC and cloud computing ecosystems

• to create a common set of frameworks, infrastructure and tools for

large-scale data analysis

• Big Data Exascale Computing (BDEC) working group

• views cloud computing as a "digitally empowered" phase of

scientific computing

• in which data sources are increasingly generated over the internet

• supercomputers and data centers are "nodes" in a very large
network of computing resources

• working in concert to deal with data flooding from multiple

sources

• Each node aggressively summarizes the data flowing to it

• releasing it to a larger computational resource node only when

necessary

• Artificial intelligence and quantum computing

• New Domain-Specific Architectures (DSAs)

and Application-Specific Integrated Circuits (ASICs)
• such as TPUs (Tensor Processing Units)

• New architectures will also lead to new languages

• and perhaps even new operating systems

New fields

Ch 15b

