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Flynn’s Taxonomy of Architecture

* SISD: Single instruction/single data

e a single control unit processing a single stream of
iInstructions

* most processors prior to the mid-2000s were SISD
machines

 MISD: Multiple instruction/single data
e rarely used anymore

* SIMD: Single instruction/multiple data
« GPUs

« MIMD: Multiple instruction/multiple data
 Modern multicore CPUs
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15.1. Heterogeneous Computing: Hardware Accelerators,
GPGPU Computing, and CUDA

 Heterogeneous computing
e computing using multiple, different processing units

* These processing units often have different ISAs (Instruction
Set Architectures), some managed by the OS, and others not

* Typically, heterogeneous computing means support for parallel

computing using the computer’s CPU cores and one or more
of its accelerator units such as

* Graphics Processing Units (GPUSs) or
* Field Programmable Gate Arrays (FPGAS)



15.1.1. Hardware Accelerators

- FPGA

* reprogrammable, meaning that they can be reconfigured to
iImplement specific functionality in hardware

* often used to prototype application-specific integrated
circuits (ASICs)

* typically require less power to run than a full CPU
 May be used for

e device controllers, for sensor data processing, for
cryptography, and for testing new hardware designs



15.1.1. Hardware Accelerators

e Cell Processors

e a multicore processor consisting of one general-purpose
processor and multiple co-processors

* Sony PlayStation 3 was the first Cell architecture
« GPUs

e perform computer graphics computations

e writes to a frame buffer, which delivers the data to the
computer’s display



15.1.2. GPU architecture overview

* Single Instruction/Multiple Thread (SIMT)
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15.1.3. GPGPU Computing

* Applies special-purpose GPU processors to general-purpose
parallel computing tasks

 Combines computation on the host CPU cores with SIMT
computation on the GPU

* The host operating system does not manage the GPU'’s
Processors or memory

 CUDA library functions to explicitly allocate CUDA memory on
the GPU and to copy data between CUDA memory on the
GPU and host memory



15.1.4. CUDA

« CUDA (Compute Unified Device Architecture)

* NVIDIA’s programming interface for GPGPU computing
 CUDA kernel function

* runs on the GPU

* annotated with global to distinguish them from host
functions

e CUDA thread

* basic unit of execution in a CUDA program
e scheduled in warps



CUDA memory functions

cudaMalloc(void **dev_ptr, size_t size);

cudaFree(void *data);

cudaMemcpy(void *dst, const void *src, size_t count, cudaMemcpyKind kind);




Blocks and Grid

 CUDA threads are organized into blocks, and the blocks are
organized into a grid

* Grids can be organized into one-, two-, or three-dimensional
groupings of blocks

 Each thread is uniquely identified by its thread (X, y, z) position
in its containing block’s (X, vy, z) position in the grid

dim3 blockDim(16,16);
dim3 gridDim(20,20);

e Call a kernel function, passing parameters

ret = do_something<<<gridDim, blockDim>>>(dev_array, 100);




Blocks and Grid

Grid
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Example CUDA Program: Scalar Multiply

1. Allocate host-side memory for the vector x and initialize it.
2. Allocate device-side memory for the vector x and copy it from host memory to GPU memory.

3. Invoke a CUDA kernel function to perform vector scalar multiply in parallel, passing as arguments the device ad-
dress of the vector x and the scalar value a.

4. Copy the result from GPU memory to host memory vector x .




// 1. allocate host memory space for the vector (missing error handling)
vector = (int *)malloc(sizeof(int)*N);

// initialize vector in host memory
// (a user-defined initialization function not listed here)
init_array(vector, N, 7);

// 2. allocate GPU device memory for vector (missing error handling)
cudaMalloc(&dev_vector, sizeof(int)*N);

// 2. copy host vector to device memory (missing error handling)
cudaMemcpy(dev_vector, vector, sizeof(int)*N, cudaMemcpyHostToDevice);

// 3. call the CUDA scalar_multiply kernel

// specify the 1D layout for blocks/grid (N/BLOCK_SIZE)

// and the 1D layout for threads/block (BLOCK_SIZE)
scalar_multiply<<<(N/BLOCK_SIZE), BLOCK_SIZE>>>(dev_vector, scalar);

// 4. copy device vector to host memory (missing error handling)
cudaMemcpy(vector, dev_vector, sizeof(int)*N, cudaMemcpyDeviceToHost);

// ...(do something on the host with the result copied into vector)
// free allocated memory space on host and GPU

cudaFree(dev_vector);
free(vector);




__global__ void scalar_multiply(int *array, int scalar) {
int index;

// compute the calling thread's index value based on
// its position in the enclosing block and grid
index = blockIdx.x * blockDim.x + threadIdx.Xx;

// the thread's uses its index value is to
// perform scalar multiply on its array element
array[index] = array[index] * scalar;




CUDA Thread Scheduling and Synchronization

e All threads in a warp execute the same set of instructions in
lockstep

 CUDA guarantees that all threads from a single kernel call

complete before any threads from a subsequent kernel call are
scheduled



15.1.5. Other Languages for GPGPU Programming

 OpenCL, OpenACC, and OpenHMPP are three examples of

languages that can be used to program any graphics device
(they are not specific to NVIDIA devices)

 OpenCL (Open Computing Language)
e similar programming model to CUDA’s

e targets a wide range of heterogeneous computing platforms
that include a host CPU combined with other compute units

 could include CPUs or accelerators such as GPUs and
FPGAS



15.1.5. Other Languages for GPGPU Programming

* OpenACC (Open Accelerator)

* a higher-level abstraction programming model than CUDA or
OpenCL

e programmer annotates portions of their code for parallel
execution

* the compiler generates parallel code that can run on GPUs
e OpenHMPP (Open Hybrid Multicore Programming)

e another language that provides a higher-level programming
abstraction for heterogeneous programming
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15.2. Distributed Memory Systems, Message Passing, and
MPI

* Distributed Memory System
e or Distributed System
* A collection of computers working together
e distributed systems include:
 Supercomputer
« Commodity Off-The-Shelf (COTS) cluster



Supercomputer

 Many compute nodes are tightly coupled to a fast
Interconnection network

 Each compute node contains its own CPU(s), GPU(s), and
memory

* Multiple nodes might share auxiliary resources like secondary
storage and power supplies



Commodity Off-The-Shelf (COTS) cluster

* Jypically employ a shared-nothing architecture

e each node contains its own set of computation hardware
(CPU(s), GPU(s), memory, and storage)
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15.2.1. Parallel and Distributed Processing Models

* Client/Server
* Pipeline

* Boss/Worker
* Peer-to-Peer



Client/Server

* Extremely common model
 Example: Web server and browser clients

* Server process provides a service to clients that ask for
something to be done

 Server process waits at well-known address
e to receive incoming connections from clients

* replies to requests with either a satisfactory response or an
error message



Pipeline

* Divides an application into a distinct sequence of steps
e each of which can process data independently
e parallel processes operate on distinct data elements
 Example: producing computer-animated films
 many frames, each of which needs similar processing
* adding textures or applying lighting



Boss/Worker

* Boss process
e acts as a central coordinator

e distributes work among the processes at other nodes

 Works well for problems that require processing a large,
divisible input

e such as password cracking

e each worker gets a subset of the list of possible passwords



Peer-to-Peer

* No centralized control process
* Peer processes self-organize the application into a structure

* in which they each take on roughly the same responsibilities
 Example: BitTorrent file sharing

e each peer repeatedly exchanges parts of a file with others
until they’ve all received the entire file

* Peer-to-peer applications are generally robust to node failures

* They typically require complex coordination algorithms,
making them difficult to build and rigorously test



15.2.2. Communication Protocols

* Processes in a distributed memory system communicate
via message passing

e one process explicitly sends a message to processes on
one or more other nodes

 Some applications require frequent communication

* to tightly coordinate the behavior of processes across many
nodes

* Other applications communicate to divide up a large input
among processes

* and then mostly work independently



15.2.2. Communication Protocols

* A distributed application formalizes its communication

expectations by defining a communication protocol,
specifying:

* When a process should send a message

* To which process(es) it should send the message
 How to format the message

* Without a protocol, an application might fail to interpret
messages properly or even deadlock

e two processes: each waiting for the other to send it a
message

* neither process will ever make progress



15.2.3. Message Passing Interface (MPI)

e Defines a standardized interface to communicate in a
distributed memory system

* By adopting the MPl communication standard, applications
become portable

e can be compiled and executed on many different systems

* Allows a programmer to divide an application into multiple
Processes

* each process has a rank number
* ranges from 0 to N-1 for an application with N processes



MPI functions

 MPIL_Comm_rank
* finds a process’s rank number
« MPI_Comm_size
* finds how many processes are executing
« MPL_Send
* sends a message
* MPI_Recv

* receives a message



MPI functions

 MPI Bcast
* One process sends a message to every other process
e MPI Scatter

e divides up an array and distributes the pieces among
processes

 MPI Gather
e retrieves all the data to coalesce the results



15.2.4. MPI Hello World

int main(int argc, char **xargv) {
int rank, process_count;
char hostname[1024];

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &process_count);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

gethostname(hostname, 1024);
printf("Hello from %s process %d of %d\n", hostname, rank, process_count);

MPI_Finalize();

return 9;




Running MPI Code

S mpicc -o hello_world_mpi hello_world_mpi.c

 The mpirun command needs to be told
* which computers to run processes on (--hostfile)
* how many processes to run at each machine (-np)

* Here, hosts.txt says to create four processes across two
computers, one named lemon, and another named orange

S mpirun -np 8 --hostfile hosts.txt ./hello_world_mpi
Hello from lemon process 4 of 8
Hello from lemon process 5 of 8
Hello from orange process 2 of 8
Hello from lemon process 6 of 8
Hello from orange process 0 of 8
Hello from lemon process 7 of 8
Hello from orange process 3 of 8
Hello from orange process 1 of 8




15.2.5. MPI Scalar Multiplication

e Scalar multiplication on an array
e using the boss/worker model

if (rank == 0) {

}

« MPI Communication

* boss sends the scalar value and the size of the array to the
workers

* boss divides the initial array into pieces and sends a piece to
each worker

» each worker multiplies the values in its piece of the array by
the scalar and then sends the updated values back to the
boss



Broadcasting Important Values

* Every process executes MPIl_Bcast

* but it behaves differently depending on the rank of the
calling process

* |f the rank matches that of the fourth argument, the caller
assumes the role of the sender

* All other processes that call MPl_Bcast act as receivers

MPI_Comm_size(MPI_COMM_WORLD, &process_count);

MPI_Bcast(&array_size, 1, MPI_INT, 6, MPI_COMM_WORLD);

local_size = array_size / process_count;




Distributing the Array

if (rank == 0) {
int 1i;

/* For each worker process, send a unique chunk of the array. */
for (i = 1; 1 < process_count; i++) {
/* Send local_size ints starting at array index (i * local_size) #*/
MPI_Send(array + (i * local_size), local_size, MPI_INT, i, 0,
MPI_COMM_WORLD) ;
}

} else {
MPI_Recv(local_array, local_size, MPI_INT, 6, 6, MPI_COMM_WORLD,

MPI_STATUS_IGNORE) ;

Input Array
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Aggregating Results

if (rank == 0) {
int 1i;

for (i = 1; 1 < process_count; i++) {
MPI_Recv(array + (i * local_size), local_size, MPI_INT, i, 9,
MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;
}
} else {
MPI_Send(local_array, local_size, MPI_INT, 6, 6, MPI_COMM_WORLD);




Scatter/Gather

* A simplified, easier procedure than the for loops in the
previous two slides

MPI_Scatter(array, local_size, MPI_INT, local_array, local_size, MPI_INT,
9, MPI_COMM_WORLD);

MPI_Gather(local_array, local_size, MPI_INT, array, local_size, MPI_INT,
©, MPI_COMM_WORLD);




15.2.6. Distributed Systems Challenges

 What if a node fails?
 What if the network fails?

 Nodes don’t share a clock
 Network delays may vary



15.3. To Exascale and
Beyond



High-Performance Computing (HPC)

* Applications written in languages like C, C++, or Fortran

e with multithreading and message passing enabled

* with libraries such as POSIX threads, OpenMP, and MPI
 High-end Data Analysis (HDA) systems

* process a deluge internet-based user data for companies
like

 Amazon, Google, Microsoft, and Facebook



HDA v. HPC

 HPC uses supercomputers

e HDA uses data centers

Types of Cloud Internet Data User Visualization, Scientific User
Applications Applications Analysis Applications Modeling Instrument Analysis  Applications
Frameworks, MapReduce Apache Spark OpenMP MPI cubA, NLl.Jt:ner.'cal

Libraries (e.g. Hadoop) OpenCL ibraries
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Middleware | System | 1 gTable) (e.g Lustre) (PBS, SLURM)
Virtual Machines / Containers
Operating Linux, Microsoft Windows Linux
System
Cluster Commodity Nodes Local Ethernet Specialty Nodes sidib el [
Network (SAN) Ethernet
Hardware (x86, ARM) Storage IR (x86, ARM) + GPU + Local Storage Interconnect

High-End Data Analysis (HDA) High Performance Computing (HPC)



15.3.1. Cloud Computing

* Three pillars
 Software as a Service (Saa$S)
* Infrastructure as a Service (laaS)
 Platform as a Service (PaaS)



Software as a Service (SaaS)

e Users access software in the cloud
 Example: Gmail
* QOrganizations can rent service
e Services are managed completely by cloud providers
 Users don’t need to purchase or maintain servers



Infrastructure as a Service (laaS)

e Users rent virtual machines in the cloud

 either general purpose or preconfigured for a particular
application

 Example: Amazon’s Elastic Compute Cloud (EC2)

* Users must configure applications, data, and in some cases
the virtual machine’s OS itself



Platform as a Service (PaaS)

» Users develop and deploy their own web applications for the
cloud

* PaaS provides a variety of languages APIs
 Examples:

* Microsoft Azure

* Google App Engine

* Heroku

* CloudBees



15.3.2. MapReduce

 Based on the mathematical operations of Map and Reduce
from functional programming

 The Map operation applies the same function to all the
elements in a collection

e as in Python’s list comprehension
 Reduce combines the elements, such as with sum()

The typical way to perform Equivalent program that
scalar multiplication performs scalar multiplication

with list comprehension

for i in range(len(array)):
array[i] = array[i] * s return [multiply(x, s) for x in array]

return array



The MapReduce Programming Model

 Map function
e written by the programmer

* takes an input (key, value) pair and outputs a series of
intermediate (key, value) pairs

e written to a distributed filesystem shared among all the
nodes

 Combiner
e defined by the MapReduce framework

e aggregates (key, value) pairs by key, to produce
(key, list(value)) pairs

* Reduce
e written by the programmer
 combines all the values to form final (key, value)
* written to the distributed filesystem and output to the user



Word Frequency program

 Determines the frequency of each word in a large text corpus

void map(char *key, char *value) {

int 1i;
int numWords = 9;

char *words[] = parseWords(value, &numWords);
for (i = 8; 1 < numWords; i++) {

emit(words[i], "1");




Word Frequency program

void reduce(char *key, struct Iterator values) {

int numWords =

char *counts]|]

int i, total = 0;

for (1 = 8; i < numWords; i++) {
total += atoi(counts[i]);

values.length();
values.items();

}

char *stringTotal = itoa(total);
emit(key, stringTotal);




Word Frequency program

«code-1 .
/« monkey -1

“ up-1 -

code - [1,1] I code -2

monkey - [1,1] » monkey — 2
» get—[1,1] l get—2
» up—[1] »up—1
coffee — [1]
» go—[1]
»to-[1] —
> job—[1]

Input file: coulton. txt 1
P
code monkey get up /  get- S

get coffee code - — coffee - 1 %

monkey go to job N code - 1 - » coffee—1

»go—-1
«monkey-17"

+to-1
» job-1

ﬁ

Figure 2. Parallelization of the opening lines of the song "Code Monkey" using the MapReduce framework



Fault Tolerance

 MapReduce was designed with fault tolerance in mind

 For any MapReduce run, there is one boss node and
potentially thousands of worker nodes

 The chance that a worker node will fail is therefore high

* Jo remedy this, the boss node pings individual worker nodes
periodically

* |f the boss node does not receive a response from a worker
node, the boss redistributes the worker’s assigned workload
to a different node and re-executes the task



Hadoop and Apache Spark

* Google’s implementation of MapReduce is closed source

* Yahoo! developed Hadoop, an open source implementation of
MapReduce

 later adopted by the Apache Foundation
 Hadoop project consists of an ecosystem of tools
 Hadoop Distributed File System or HDFS
* an open source alternative to Google File System
« HBase
 modeled after Google’s BigTable



Hadoop and Apache Spark

 Hadoop limitations:

* it is difficult to chain multiple MapReduce jobs together into
a larger workflow

e writing of intermediates to the HDFS proves to be a
bottleneck, especially for small jobs (smaller than one

gigabyte)
 Apache Spark was designed to address these issues, among
others.

* up to 100 times faster than Hadoop on some applications



15.3.3. Looking Toward the Future: Opportunities and
Challenges

e Centralized computing

* new data is produced in edge environments
* near sensors and other data-generating instruments

 on the other end of the network from commercial cloud
providers and HPC systems

e scientists and practitioners gather data
e analyze it using a local cluster, or
 move it to a supercomputer or data center for analysis

* This centralized computing is no longer a viable strategy as

Improvements in sensor technology have exacerbated the data
deluge

* Including Internet of Things (loT) devices



Big Data

* Aggressively summarize data at each transfer point between
the edge and the cloud

 Infrastructure capable of processing, storing, and summarizing
data in edge environments in a unified platform

 Edge (or fog) computing
* Flips the traditional analysis model of Big Data

* Instead of analysis occurring at the supercomputer or data
center ("last mile”)

* analysis occurs at the source of data production ("first mile")



Convergence

e Converge the HPC and cloud computing ecosystems

* to create a common set of frameworks, infrastructure and tools for
large-scale data analysis

* Big Data Exascale Computing (BDEC) working group

e views cloud computing as a "digitally empowered" phase of
scientific computing

* in which data sources are increasingly generated over the internet

e supercomputers and data centers are "nodes" in a very large
network of computing resources

e working in concert to deal with data flooding from multiple
sources

 Each node aggressively summarizes the data flowing to it

* releasing it to a larger computational resource node only when
necessary



New fields

* Artificial intelligence and quantum computing

 New Domain-Specific Architectures (DSAs)
and Application-Specific Integrated Circuits (ASICs)

* such as TPUs (Tensor Processing Units)
 New architectures will also lead to new languages

e and perhaps even new operating systems






