
Sam Bowne Updated Sep 16, 2025

2. A Deeper Dive into C

For COMSC 142

• https://diveintosystems.org/book/index.html

Free online textbook

2.1. Parts of Program Memory and Scope

2.2. C Pointer Variables

2.3. Pointers and Functions

2.4. Dynamic Memory Allocation

2.5. Arrays in C

2.6. Strings and the String Library

2.7. Structs

2.8. Input / Output in C

2.9. Advanced C Features

Topics

2.1. Parts of Program Memory and Scope

Notice the same local
variable name val used in

both functions

• Local
variables
and
parameters
reside on the
stack

2.2. C Pointer Variables

• Pointer variable contains an address

• Data is stored at that address

• This is called indirection

Pointers

Declaring and Initializing a Pointer Variable

Declaring

Initializing

• NULL represents an invalid address

• Null pointers should never be dereferenced

Using NULL

Dereferencing a Pointer Variable

Errors

Testing for NULL Pointers

Ch 2a

2.3. Pointers and Functions

Function to Double a Number

• C functions get a copy of an argument's value
to work with

• Modifying parameters in a function does not

change its argument's value

Arguments Pass by Value

Function to Double a Number

• Passing a pointer variable to a function

• Allows the function to modify an argument

value

Pointer Parameters

Passing a
pointer
allows the
function to
change a
value in the
calling
function

2.4. Dynamic Memory Allocation

A pointer on
the stack
points to a
block of
memory
allocated on
the heap

• malloc returns a void * type

• Can point to any type of data

malloc and free

• If there's not enough free heap memory

• malloc returns a NULL pointer

When malloc Fails

• When a program no longer needs the
allocated memory, it should:

• call free()
• Set the pointer to NULL

• Failing to do this leads to many security
problems, including

• Dangling pointer (aka use-after-free)

• Double-free

Freeing Memory

Dynamically Allocated Arrays and Strings

• If a pointer is passed to a function, it can write
to the data on the heap

Pointers to Heap Memory and Functions

Ch 2b

2.5. Arrays in C

Statically Allocated Arrays

Dynamically Allocated Arrays

Array Memory Layout

• Easier to read
and update
than literal
values buried
deep in the
code

Constants

Two-
Dimensional
Arrays

2.6. Strings and the String Library

Statically Allocated Strings (Arrays of char)

• strcpy, strcat, and many other string
functions

• Simply start writing at a string pointer

• and write as many bytes as needed,

• followed by a NULL byte

• They don't check to make sure enough room
was reserved for the string

• That is the programmer's responsibility

• This leads to buffer overflows

C String Functions and Destination Memory

• strncpy is safer than strcpy

strlen, strcpy, strncpy

• Only available in newer versions of Linux's
GNU C library

strlcpy

• Comparing string variables using
the == operator does not compare the
characters in the strings 

•  it compares only the base addresses of the

two strings

strcmp, strncmp

Strcmp Example

strcat and strncat

strstr and strchr

• Prints to a string

sprintf

Functions for Individual Character Values

Functions to Convert Strings to Other Types

Ch 2c

2.7. Structs

The C struct Type

structs on the Stack and the Heap

2.8. Input / Output in C

• stdin
• Standard input

• scanf() reads from stdin
• The user on the keyboard

• stdout
• Standard output

• printf() writes to stdout
• The monitor

• stderr
• Standard error

Standard Input/Output

• From a shell (not C code)

Input and Output Redirection

Another Way

printf

Formatting Placeholders

Number Representations

• Reads data from stdin
• Input values must be separated by whitespace

scanf

• Read or write a single character

getchar and putchar

File Input/Output

File Input/Output

File Input/Output

File Input/Output

File Input/Output

File Input/Output

File Input/Output

File Input/Output

Format String for fscanf

2.9. Advanced C Features

• Use argc and argv to refer to command-line
arguments

• argc counts all items on the command line

• If a user enters:

• argc will be 4

2.9.2. Command Line Arguments

• argv is the argument vector

• Contains the value of every argument

• Followed by a NULL

• A total of argc + 1 elements

2.9.2. Command Line Arguments

• If a user enters:

• argv will have
these elements

• They are string
type

2.9.2. Command Line Arguments

Converting Data Types

2.9.4. Pointer Arithmetic

Pointer Arithmetic

Pointer Arithmetic

Pointer Arithmetic

Ch 2d

