
Sam Bowne Jan 27, 2025

8. 32-bit x86 Assembly

For COMSC 142

• https://diveintosystems.org/book/index.html

Free online textbook

8.1. Assembly Basics

8.2. Common Instructions

8.3. Additional Arithmetic Instructions

8.4. Conditional Control and Loops

8.5. Functions in Assembly

8.6. Recursion

8.7. Arrays in Assembly

8.8. Matrices in Assembly

8.9. Structs in Assembly

8.10. Buffer Overflows

Topics

8.1. Assembly Basics

On 64-Bit Debian Linux
• To compile to a 32-bit executable

• sudo apt update
• sudo apt install build-essential gcc-multilib gdb -y
• gcc -m32 program.c

AT&T v Intel Syntax
• Linux typically uses AT&T

• And the GNU assembler (GAS)

• Windows uses Intel syntax

• And Microsoft's MASM assembler

• Or Linux's NASM assembler

8.1. Diving into Assembly: Basics

Objdump

8.1.1. Registers
• x86 has eight registers for storing 32-bit data:

• The first 6 are general-purpose

• %esp and %ebp are the stack pointer and the frame pointer
• %eip is the instruction pointer

8.1.2. Advanced Register Notation
• x

8.1.3. Instruction Structure
• Consider the instruction

• add $0x2, %eax

• The opcode is "add"

• The operands are "$0x2" and "%eax"

• Constant (literal) values are preceded by $, like "$0x2"

• Registers are written like "%eax"

• Memory locations

• 0x8(%ebp)

• Take the value in ebp, add 8, go to that memory location

• This is a pointer dereference

• 0x8100 is an immediate memory address

Examples

Notes

8.2. Common Instructions

8.2. Common Instructions

8.1.5. Instruction Suffixes

• wget https://samsclass.info/COMSC-142/
proj/adder2.c

• gcc -m32 -fno-pie -o adder2 adder2.c

• adder2  

function 
has no local 
variables

• Its stack  
frame will  
have size 0

Demo: adder2

• gdb -q adder2

• set style enabled off

• break *adder2

• run

• disassemble adder2

• info registers

Demo: adder2

• $eip points to
the start of
adder2

• Note arrow in
assembly code

• First 2
instructions
are the
function
prologue

• Last 2
instructions
are the
function
epilogue

• Before
entering the
adder2
function

• The stack
frame goes
from

• $esp ...a8

• to

• $ebp ...c8

• The prologue prepares a new stack frame
• push %ebp

• Saves the ebp from the calling function

• mov %esp, %ebp

• Starts a new frame based at the next

unused stack word

• nexti

• nexti

• disassemble

adder2

• info registers

• x/12x $esp

• New stack
frame has size 0

• $esp = $ebp

• Top of stack has
saved ebp and
return pointer

• The epilogue releases the stack frame for re-use
• pop %ebp

• Restores the previous ebp from the calling

function

• ret

• pops the return pointer off the stack and

places it into the eip

Ch 8a

8.3. Additional Arithmetic Instructions

Common Arithmetic Instructions›

Bit Shift Instructions

• Each shift instruction take two operands, one which is usually
a register (denoted by D), and the other which is a shift value
(v)

Bitwise Operations

8.3.3. The Load Effective Address Instruction

• Examples, with eax = 5, edx = 4, and ecx = 0x808

8.4. Conditional Control and Loops

 Conditional Control Instructions
• Does a comparison without modifying the destination register

• Only modifies condition code flags

Jump Instructions

Conditional Jump Instructions

Goto
• x

if Statements in Assembly

• Prologue and epilogue
removed from the
assembly code

Conditional Move (cmov) Instructions
• x

Conditional Move (cmov) Instructions
• x

8.4.3. Loops in assembly
• Both these C

loops compile
to the same
assembly code

Loop in Assembly
• x

total = 0
i = 1

Is i <= n ?

total += i

i += 1

8.5. Functions in Assembly

Common Function Management Instructions

• wget https://samsclass.info/COMSC-142/
proj/adder.c

• gcc -m32  
-fno-pie -o  
adder adder.c

• cat adder.c

Note the  
uninitialized  
variable a in adder()

• ./adder

• Prints out 42

Demo: adder

• gdb -q adder

• break * assign

• break* adder

• set style enabled off

• run

• disassemble assign

• print $esp

• print $ebp

• x/16x $ebp - 0x30

Demo: adder

• nexti 5

• disassemble assign

• print $esp

• print $ebp

• x/16x $ebp - 0x30

• Notice the 0x28
written to the stack
(decimal 40)

Demo: adder

• continue

• disassemble adder

• print $esp

• print $ebp

• x/16x $ebp - 0x30

• Notice the 0x28 left
over on the stack

Demo: adder

• nexti 5

• disassemble adder

• print $esp

• print $ebp

• x/16x $ebp - 0x30

• The 0x28 is at
-0x4(%ebp)

• Where the local
variable is

Demo: adder

Ch 4a

8.6. Recursion

C Sumr
• Totals integers from 1

through n

• sumr() recursively calls

itself

Animation

• https://diveintosystems.org/book/C8-IA32/recursion.html

8.7. Arrays in Assembly

Arrays
• Declared in C with statements like these:

• int arr[5]
• int * arr[5]

• Or, more generally

• Type arr[N]

Arrays in Assembler
• %edx contains the address of arr
• %ecx contains the value i
• %eax contains the value x

Array with Five Integer Elements

• Each element is four bytes long

8.8. Matrices in Assembly
Skip this section

8.9. Structs in Assembly

Example

Initializing a Student

Initializing a Student

8.9.1. Data Alignment and Structs
• Four-byte data

types are four-byte
aligned

• Two-byte data
types are two-byte
aligned

• So padding is
required

8.10. Buffer Overflows

• wget https://samsclass.info/COMSC-142/
proj/secret.tar.gz1

• tar -xzvf secret.tar.gz1

• chmod +x secret

• ./secret

Demo: Buffer Overflow

Partial Source Code
• User input can

be longer than
the buffer size of
12

• gdb -q secret

• set style enabled off

• run

• AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJ

• Crashes with 
0x49494949 
in %eip

• ASCII for "I"

Demo: Buffer Overflow

• disassemble endGame

• Reveals our desired starting address

Demo: Buffer Overflow

• Otherwise the exploit won't work outside gdb

• Because the address of the target routine will be

randomized

• sudo su -

• echo 0 > /proc/sys/kernel/randomize_va_space

• exit

Disable ASLR

• sudo apt install xxd

• python3 secret_exploit.py > exploit

• xxd exploit

• ./secret < exploit

Python Exploit Script

8.10.6. Protecting Against Buffer Overflow

• Address Space Layout Randomization (ASLR)
• Runs each process in a random memory location

• Makes it difficult to jump to injected code

• Stack Canaries
• A value placed at the end of a stack frame

• Detects buffer overflow exploits

• If this value is changed, the program halts

• Data Execution Prevention (DEP)
• Remove execute permission from memory segments

• W|X -- segments can be writable or executable, but not both

• Injected code won't run

Safer C Functions
• Limit input length to fit in buffer size

Safer Source Code

Ch 4b

