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8.1. Assembly Basics



On 64-Bit Debian Linux
• To compile to a 32-bit executable

• sudo apt update 
• sudo apt install build-essential gcc-multilib gdb -y 
• gcc -m32 program.c



AT&T v Intel Syntax
• Linux typically uses AT&T

• And the GNU assembler (GAS)


• Windows uses Intel syntax

• And Microsoft's MASM assembler

• Or Linux's NASM assembler



8.1. Diving into Assembly: Basics



Objdump



8.1.1. Registers
• x86 has eight registers for storing 32-bit data:


• The first 6 are general-purpose

• %esp and %ebp are the stack pointer and the frame pointer 
• %eip is the instruction pointer



8.1.2. Advanced Register Notation
• x



8.1.3. Instruction Structure
• Consider the instruction

• add $0x2, %eax 

• The opcode is "add"

• The operands are "$0x2" and "%eax"

• Constant (literal) values are preceded by $, like "$0x2"

• Registers are written like "%eax"

• Memory locations 

• 0x8(%ebp)

• Take the value in ebp, add 8, go to that memory location

• This is a pointer dereference


• 0x8100 is an immediate memory address



Examples



Notes



8.2. Common Instructions



8.2. Common Instructions



8.1.5. Instruction Suffixes







• wget https://samsclass.info/COMSC-142/
proj/adder2.c


• gcc -m32 -fno-pie -o adder2 adder2.c

• adder2  

function 
has no local 
variables


• Its stack  
frame will  
have size 0

Demo: adder2



• gdb -q adder2

• set style enabled off

• break *adder2

• run

• disassemble adder2

• info registers

Demo: adder2



• $eip points to 
the start of 
adder2


• Note arrow in 
assembly code


• First 2 
instructions 
are the 
function 
prologue 

• Last 2 
instructions 
are the 
function 
epilogue



• Before 
entering the 
adder2 
function


• The stack 
frame goes 
from 

• $esp ...a8


• to

• $ebp ...c8



• The prologue prepares a new stack frame 
• push %ebp

• Saves the ebp from the calling function


• mov %esp, %ebp

• Starts a new frame based at the next 

unused stack word



• nexti

• nexti

• disassemble 

adder2

• info registers

• x/12x $esp


• New stack 
frame has size 0

• $esp = $ebp


• Top of stack has 
saved ebp and 
return pointer



• The epilogue releases the stack frame for re-use 
• pop %ebp

• Restores the previous ebp from the calling 

function

• ret

• pops the return pointer off the stack and 

places it into the eip
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8.3. Additional Arithmetic Instructions



Common Arithmetic Instructions›



Bit Shift Instructions

• Each shift instruction take two operands, one which is usually 
a register (denoted by D), and the other which is a shift value 
(v)



Bitwise Operations



8.3.3. The Load Effective Address Instruction

• Examples, with eax = 5, edx = 4, and ecx = 0x808



8.4. Conditional Control and Loops



 Conditional Control Instructions
• Does a comparison without modifying the destination register

• Only modifies condition code flags



Jump Instructions



Conditional Jump Instructions



Goto
• x



if Statements in Assembly

• Prologue and epilogue 
removed from the 
assembly code



Conditional Move (cmov) Instructions
• x



Conditional Move (cmov) Instructions
• x



8.4.3. Loops in assembly
• Both these C 

loops compile 
to the same 
assembly code



Loop in Assembly
• x

total = 0
i = 1

Is i <= n ?

total += i

i += 1



8.5. Functions in Assembly



Common Function Management Instructions



• wget https://samsclass.info/COMSC-142/
proj/adder.c


• gcc -m32  
-fno-pie -o  
adder adder.c


• cat adder.c

Note the  
uninitialized  
variable a in adder() 

• ./adder

• Prints out 42

Demo: adder



• gdb -q adder

• break * assign

• break* adder

• set style enabled off

• run

• disassemble assign

• print $esp

• print $ebp

• x/16x $ebp - 0x30

Demo: adder



• nexti 5

• disassemble assign

• print $esp

• print $ebp

• x/16x $ebp - 0x30


• Notice the 0x28 
written to the stack 
(decimal 40)

Demo: adder



• continue

• disassemble adder

• print $esp

• print $ebp

• x/16x $ebp - 0x30


• Notice the 0x28 left 
over on the stack

Demo: adder



• nexti 5

• disassemble adder

• print $esp

• print $ebp

• x/16x $ebp - 0x30


• The 0x28 is at 
-0x4(%ebp) 

• Where the local 
variable is

Demo: adder
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8.6. Recursion



C Sumr
• Totals integers from 1 

through n

• sumr() recursively calls 

itself



Animation

• https://diveintosystems.org/book/C8-IA32/recursion.html



8.7. Arrays in Assembly



Arrays
• Declared in C with statements like these:

• int arr[5] 
• int * arr[5] 

• Or, more generally

• Type arr[N]



Arrays in Assembler
• %edx contains the address of arr 
• %ecx contains the value i 
• %eax contains the value x



Array with Five Integer Elements

• Each element is four bytes long



8.8. Matrices in Assembly
Skip this section



8.9. Structs in Assembly



Example



Initializing a Student



Initializing a Student



8.9.1. Data Alignment and Structs
• Four-byte data 

types are four-byte 
aligned


• Two-byte data 
types are two-byte 
aligned


• So padding is 
required



8.10. Buffer Overflows



• wget https://samsclass.info/COMSC-142/
proj/secret.tar.gz1


• tar -xzvf secret.tar.gz1

• chmod +x secret

• ./secret

Demo: Buffer Overflow



Partial Source Code
• User input can 

be longer than  
the buffer size of 
12



• gdb -q secret

• set style enabled off

• run

• AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJ


• Crashes with 
0x49494949 
in %eip 

• ASCII for "I"

Demo: Buffer Overflow



• disassemble endGame

• Reveals our desired starting address

Demo: Buffer Overflow



• Otherwise the exploit won't work outside gdb

• Because the address of the target routine will be 

randomized

• sudo su -

• echo 0 > /proc/sys/kernel/randomize_va_space

• exit

Disable ASLR



• sudo apt install xxd

• python3 secret_exploit.py > exploit

• xxd exploit

• ./secret < exploit

Python Exploit Script



8.10.6. Protecting Against Buffer Overflow

• Address Space Layout Randomization (ASLR) 
• Runs each process in a random memory location

• Makes it difficult to jump to injected code


• Stack Canaries 
• A value placed at the end of a stack frame

• Detects buffer overflow exploits

• If this value is changed, the program halts


• Data Execution Prevention (DEP) 
• Remove execute permission from memory segments

• W|X -- segments can be writable or executable, but not both

• Injected code won't run



Safer C Functions
• Limit input length to fit in buffer size



Safer Source Code
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