
Sam Bowne Jan 27, 2025

9. ARMv8 Assembly

For COMSC 142

• https://diveintosystems.org/book/index.html

Free online textbook

9.1. Assembly Basics

9.2. Common Instructions

9.3. Additional Arithmetic Instructions

9.4. Conditional Control and Loops

9.5. Functions in Assembly

9.6. Recursion

9.9. Arrays in Assembly

9.9. Matrices in Assembly

9.9. Structs in Assembly

9.10. Buffer Overflows

Topics

9.1. Assembly Basics

9.1. Diving into Assembly: Basics

Objdump

• Instructions are always 64 bits long

• The three outlined instructions perform a + 2
• str stores register into memory

• ldr loads memory into register

9.1.1. Registers
• ARMv8 processors have 31 registers for storing general-purpose

64-bit data:

• x0 through x30

• Special-purpose registers:

• pc is the program counter
• sp is the stack pointer
• lr is the link register (the return address from a function)
• zr is the zero register (always contains zero)

ARM Manual
• It's actually more complicated

• https://developer.arm.com/documentation/dui0801/l/

Overview-of-AArch64-state/Registers-in-AArch64-state

https://developer.arm.com/documentation/dui0801/l/Overview-of-AArch64-state/Registers-in-AArch64-state
https://developer.arm.com/documentation/dui0801/l/Overview-of-AArch64-state/Registers-in-AArch64-state

9.1.2. Advanced Register Notation
• ARMv8 is an extension of the 32-bit ARMv7-A architecture

• So it supports using 32-bit registers

• When using w0, the upper 32 bits of x0 are zeroed

9.1.3. Instruction Structure
• Most instructions have this format:

• opcode D, O1, O2

• opcode is the operation code

• D is the destination register

• O1 is the first operand
• O2 is the second operand
• For example

• add w0, w0, #0x2

9.1.3. Instruction Structure
• For example

• add w0, w0, #0x2

• Types of operands

• Constant (literal) values are preceded by #, like #0x2

• Registers are written like w0 or sp

• Memory locations

• [sp, 12]
• Take the value in sp, add 12, look up that memory

location

• This is a pointer dereference

Examples

Examples

• w3, STXW
• Sign-extends the 32-bit w3 to 64 bits

• Scaled memory

• Enables the calculation of offsets through

the use of a left shift

Notes

9.2. Common Instructions

9.2. Common Instructions

Example

Without Optimization
• Compile adder2.c without optimization

• wget https://samsclass.info/COMSC-142/proj/adder2.c

gcc -o adder2 adder2.c
• And view the assembly code

• gdb -q adder2
• set style enabled off
• disassemble adder2

• You get conventional inefficient code

With Optimization
• Compile adder2.c with optimization

• gcc -O1 -o adder2_O1 adder2.c

• And view the assembly code

• gdb -q adder2_O1
• set style enabled off
• disassemble adder2

• You get optimized code

Load and Store Pair

• uname -a

• Must be on ARM hardware

• wget https://samsclass.info/COMSC-142/proj/adder2.c

• gcc -o adder2 adder2.c

Demo: adder2

• gdb -q adder2

• set style enabled off

• break *adder2

• run

Demo: adder2
• disassemble adder2

• print $sp

• x/12x $sp - 0x30

• First instruction is the function prologue
• Next-to-last instruction is the function epilogue

Demo: adder2

• nexti 4

• disassemble adder2

• print $sp

• x/16x $sp - 0x20

• print/x $lr

• 40 (0x28) is stored in the
newly created stack
frame

• Return pointer is in $lr,
not on the stack

9.3. Arithmetic Instructions

Common Arithmetic Instructions›

Multiplication and Division

Bit Shift Instructions

Bitwise Operations

Ch 9a

9.4. Conditional Control and Loops

 Conditional Comparison Instructions
• Does a comparison without modifying the destination register

• Only modifies condition code flags

Branch instructions
• Examples

• b 0x824 <getSmallest+48>
• b.le 0x81c <getSmallest+40>

Conditional branch suffixes

if Statements in Assembly

Annotated Assembly

Conditional Select Instruction

9.4.3. Loops in assembly
• Both these C

loops compile
to the same
assembly code

Loop in Assembly

9.5. Functions in Assembly

Common Function Management Instructions

9.5.1. Function Parameters

• The first eight parameters to a function are
stored in registers x0… x7.

• If a function requires more than seven
parameters, the remaining parameters are
loaded into the call stack

• wget https://samsclass.info/COMSC-142/
proj/adder.c

• gcc -o  
adder adder.c

• cat adder.c

Note the  
uninitialized  
variable a in adder()

• ./adder

• Prints out 42

Demo: adder

• gdb -q adder

• break * assign

• break * adder

• set style enabled of

Demo: adder
• run

• disassemble assign

• print $sp

• x/16x $sp - 0x30

• nexti 4

• disassemble assign

• print $sp

• x/16x $sp - 0x20

Demo: adder
• Notice the 0x28

written to the stack
(decimal 40)

• continue

• disassemble adder

• print $sp

• x/16x $sp - 0x30

Demo: adder
• Notice the 0x28 left

over on the stack

• nexti 3

• disassemble adder

• print $sp

• x/16x $sp - 0x20

Demo: adder
• The 0x28 is at  

[sp, #12]
• Where the local

variable is
• It's 32 bits long

9.6. Recursion

C Sumr
• Totals integers from 1

through n

• sumr() recursively calls

itself

Animation

• https://diveintosystems.org/book/C9-ARM64/recursion.html

9.9. Arrays in Assembly

Arrays
• Declared in C with statements like these:

• int arr[10]
• int * arr[10]

• Or, more generally

• Type arr[N]

Arrays in Assembler
• x1contains the address of arr
• x2 contains the value i
• x0 contains the value x

• LSL, #2 in 3rd example

• Multiplies by 4

• To move by 4 bytes

Array with Ten Integer Elements

• int variables are 4 bytes long
• Each element is 4 bytes long

9.9. Matrices in Assembly
Skip this section

9.9. Structs in Assembly

Example

Initializing a Student

Initializing a Student

9.9.1. Data Alignment and Structs
• Four-byte data

types are four-byte
aligned

• Eight-byte data
types are eight-byte
aligned

• So padding is
required

9.10. Buffer Overflows

• wget https://samsclass.info/COMSC-142/proj/
secretARM64.tar.gz1

• tar -xzvf secretARM64.tar.gz1

• cd secretARM64

• ./secret

Demo: Buffer Overflow

Partial Source Code
• User input can

be longer than
the buffer size of
12

• gdb -q secret

• set style enabled off

• run

• AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJ

• Crashes with 0x004a4a4a49494949 in %pc
• ASCII for "IIIIJJJ"

Demo: Buffer Overflow

• disassemble endGame

• Reveals our desired starting address

Demo: Buffer Overflow

• Otherwise the exploit won't work outside gdb

• Because the address of the target routine will be

randomized

• sudo su -

• echo 0 > /proc/sys/kernel/randomize_va_space

• exit

Disable ASLR

• python3 secret_exploit_ARM.py > exploit

• sudo apt install xxd

• xxd exploit

• ./secret < exploit

Python Exploit Script

9.10.6. Protecting Against Buffer Overflow

• Address Space Layout Randomization (ASLR)
• Runs each process in a random memory location

• Makes it difficult to jump to injected code

• Stack Canaries
• A value placed at the end of a stack frame

• Detects buffer overflow exploits

• If this value is changed, the program halts

• Data Execution Prevention (DEP)
• Remove execute permission from memory segments

• W|X -- segments can be writable or executable, but not both

• Injected code won't run

Safer C Functions
• Limit input length to fit in buffer size

Safer Source Code

Ch 9b

