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9.1. Assembly Basics



9.1. Diving into Assembly: Basics



Objdump

• Instructions are always 64 bits long

• The three outlined instructions perform a + 2 
• str stores register into memory

• ldr loads memory into register



9.1.1. Registers
• ARMv8 processors have 31 registers for storing general-purpose 

64-bit data:

• x0 through x30


• Special-purpose registers:

• pc is the program counter 
• sp is the stack pointer 
• lr is the link register (the return address from a function) 
• zr is the zero register (always contains zero)



ARM Manual
• It's actually more complicated

• https://developer.arm.com/documentation/dui0801/l/

Overview-of-AArch64-state/Registers-in-AArch64-state

https://developer.arm.com/documentation/dui0801/l/Overview-of-AArch64-state/Registers-in-AArch64-state
https://developer.arm.com/documentation/dui0801/l/Overview-of-AArch64-state/Registers-in-AArch64-state


9.1.2. Advanced Register Notation
• ARMv8 is an extension of the 32-bit ARMv7-A architecture

• So it supports using 32-bit registers

• When using w0, the upper 32 bits of x0 are zeroed



9.1.3. Instruction Structure
• Most instructions have this format:

• opcode D, O1, O2 

• opcode is the operation code

• D is the destination register

• O1 is the first operand 
• O2 is the second operand 
• For example

• add w0, w0, #0x2



9.1.3. Instruction Structure
• For example

• add w0, w0, #0x2  

• Types of operands

• Constant (literal) values are preceded by #, like #0x2

• Registers are written like w0 or sp

• Memory locations 

• [sp, 12] 
• Take the value in sp, add 12, look up that memory 

location

• This is a pointer dereference



Examples



Examples

• w3, STXW 
• Sign-extends the 32-bit w3 to 64 bits


• Scaled memory

• Enables the calculation of offsets through 

the use of a left shift



Notes



9.2. Common Instructions



9.2. Common Instructions



Example



Without Optimization
• Compile adder2.c without optimization

• wget https://samsclass.info/COMSC-142/proj/adder2.c 

gcc -o adder2 adder2.c 
• And view the assembly code

• gdb -q adder2 
• set style enabled off 
• disassemble adder2 

• You get conventional inefficient code



With Optimization
• Compile adder2.c with optimization

• gcc -O1 -o adder2_O1 adder2.c 

• And view the assembly code

• gdb -q adder2_O1 
• set style enabled off 
• disassemble adder2 

• You get optimized code



Load and Store Pair



• uname -a

• Must be on ARM hardware


• wget https://samsclass.info/COMSC-142/proj/adder2.c

• gcc -o adder2 adder2.c

Demo: adder2



• gdb -q adder2

• set style enabled off

• break *adder2

• run

Demo: adder2
• disassemble adder2

• print $sp

• x/12x $sp - 0x30



• First instruction is the function prologue 
• Next-to-last instruction is the function epilogue

Demo: adder2



• nexti 4

• disassemble adder2

• print $sp

• x/16x $sp - 0x20

• print/x $lr

• 40 (0x28) is stored in the 
newly created stack 
frame 

• Return pointer is in $lr, 
not on the stack



9.3. Arithmetic Instructions



Common Arithmetic Instructions›



Multiplication and Division



Bit Shift Instructions



Bitwise Operations
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9.4. Conditional Control and Loops



 Conditional Comparison Instructions
• Does a comparison without modifying the destination register

• Only modifies condition code flags



Branch instructions
• Examples

• b    0x824 <getSmallest+48> 
• b.le 0x81c <getSmallest+40>



Conditional branch suffixes



if Statements in Assembly



Annotated Assembly



Conditional Select Instruction



9.4.3. Loops in assembly
• Both these C 

loops compile 
to the same 
assembly code



Loop in Assembly



9.5. Functions in Assembly



Common Function Management Instructions



9.5.1. Function Parameters

• The first eight parameters to a function are 
stored in registers x0… x7. 


• If a function requires more than seven 
parameters, the remaining parameters are 
loaded into the call stack



• wget https://samsclass.info/COMSC-142/
proj/adder.c


• gcc -o  
adder adder.c


• cat adder.c

Note the  
uninitialized  
variable a in adder() 

• ./adder

• Prints out 42

Demo: adder



• gdb -q adder

• break * assign

• break * adder

• set style enabled of

Demo: adder
• run

• disassemble assign

• print $sp

• x/16x $sp - 0x30



• nexti 4

• disassemble assign

• print $sp

• x/16x $sp - 0x20

Demo: adder
• Notice the 0x28 

written to the stack 
(decimal 40)



• continue

• disassemble adder

• print $sp

• x/16x $sp - 0x30

Demo: adder
• Notice the 0x28 left 

over on the stack



• nexti 3

• disassemble adder

• print $sp

• x/16x $sp - 0x20

Demo: adder
• The 0x28 is at  

[sp, #12] 
• Where the local 

variable is 
• It's 32 bits long



9.6. Recursion



C Sumr
• Totals integers from 1 

through n

• sumr() recursively calls 

itself



Animation

• https://diveintosystems.org/book/C9-ARM64/recursion.html



9.9. Arrays in Assembly



Arrays
• Declared in C with statements like these:

• int arr[10] 
• int * arr[10] 

• Or, more generally

• Type arr[N]



Arrays in Assembler
• x1contains the address of arr 
• x2 contains the value i 
• x0 contains the value x

• LSL, #2 in 3rd example

• Multiplies by 4

• To move by 4 bytes



Array with Ten Integer Elements

• int variables are 4 bytes long 
• Each element is 4 bytes long



9.9. Matrices in Assembly
Skip this section



9.9. Structs in Assembly



Example



Initializing a Student



Initializing a Student



9.9.1. Data Alignment and Structs
• Four-byte data 

types are four-byte 
aligned


• Eight-byte data 
types are eight-byte 
aligned


• So padding is 
required



9.10. Buffer Overflows



• wget https://samsclass.info/COMSC-142/proj/
secretARM64.tar.gz1


• tar -xzvf secretARM64.tar.gz1

• cd secretARM64

• ./secret

Demo: Buffer Overflow



Partial Source Code
• User input can 

be longer than  
the buffer size of 
12



• gdb -q secret

• set style enabled off

• run

• AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJ


• Crashes with 0x004a4a4a49494949 in %pc 
• ASCII for "IIIIJJJ"

Demo: Buffer Overflow



• disassemble endGame

• Reveals our desired starting address

Demo: Buffer Overflow



• Otherwise the exploit won't work outside gdb

• Because the address of the target routine will be 

randomized

• sudo su -

• echo 0 > /proc/sys/kernel/randomize_va_space

• exit

Disable ASLR



• python3 secret_exploit_ARM.py > exploit

• sudo apt install xxd

• xxd exploit

• ./secret < exploit

Python Exploit Script



9.10.6. Protecting Against Buffer Overflow

• Address Space Layout Randomization (ASLR) 
• Runs each process in a random memory location

• Makes it difficult to jump to injected code


• Stack Canaries 
• A value placed at the end of a stack frame

• Detects buffer overflow exploits

• If this value is changed, the program halts


• Data Execution Prevention (DEP) 
• Remove execute permission from memory segments

• W|X -- segments can be writable or executable, but not both

• Injected code won't run



Safer C Functions
• Limit input length to fit in buffer size



Safer Source Code
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