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Figure 1: Hype Cycle for Artificial Intelligence, 2023
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Types of Machine Learning Systems



Supervised Learning

* Training data has labels

* Indicating desired solution
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Figure 1-5. A labeled training set for spam classification (an example of supervised learning)
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Unsupervised Learning

* Training data is unlabeled

Training set

Figure 1-7. An unlabeled training set for unsupervised learning



Unsupervised Learning

* Clustering algorithm

e Sorts data into groups

Feature 2

Feature |

Figure 1-8. Clustering



Unsupervised Learning

 Anomaly detection

 Find unusual credit card transactions

* Find manufacturing defects

Feature 2 .
New instances
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Figure 1-10. Anomaly detection



Self-Supervised Learning

e (Generates a labeled dataset from an unlabeled one

 Example: mask part of an image, train a model to recover the
original image

e

Figure 1-12. Self-supervised learning example: input (left) and target (right)



Large Language Models

e Start with sentences written by humans
 Randomly mask some words

* |Learn to predict the masked word

0.32 can artificial intelligence can take over the world.
0.18 will artificial intelligence will take over the world.
0.06 to artificial intelligence to take over the world.
0.05 ##s artificial intelligences take over the world.

0.05 would artificial intelligence would take over the world.

from transformers import pipeline
unmasker = pipeline('fill-mask', model='bert-base-uncased')
result = unmasker("Artificial Intelligence [MASK] take over the world.")
print()
for r in result:
print(round(r['score'], 2), rl['token_str'], "\t", rl['sequence'l])




@' deepseeclk

A “reasoning” model: performs a “thinking” process before
generating an answer

Trained on a small set of carefully prepared question-answer
pairs

Much faster and cheaper than traditional training

Similar to how students in school learn
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NIST Al 100-1

Artificial Intelligence Risk Management
Framework (AI RMF 1.0)

NATIONAL INSTITUTE OF
STANDARDS AND TECHNOLOGY
U.S.DEPARTMENT OF COMMERCE




Harm to People

* Individual: Harm to a person’s
civil liberties, rights, physical or =
psychological safety, or economic
opportunity.

* Group/Community: Harm to a
group such as discrimination
against a population sub-group.

» Societal: Harm to democratic
participation or educational
access.



Harm to an Organization

* Harm to an organization’s
business operations.

* Harm to an organization from
security breaches or monetary
l0sS.

* Harm to an organization’s
reputation.



Harm to an Ecosystem

* Harm to interconnected and
interdependent elements and
resources.

* Harm to the global financial
system, supply chain, or
interrelated systems.

* Harm to natural resources, the
environment, and planet.



Inscrutability

Interpretability

Predictive power



Principles for the security of
machine learning

Version 1

Published August 2022
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Operation and monitoring
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OWASP Top Ten Machine Learning Risks

 MLO1:2023 Input Manipulation Attack

« ML02:2023 Data Poisoning Attack
 ML03:2023 Model Inversion Attack

« ML04:2023 Membership Inference Attack
e MLO05:2023 Model Theft

e ML06:2023 Al Supply Chain Attacks

e MLO7:2023 Transfer Learning Attack
 ML08:2023 Model Skewing

e ML09:2023 Output Integrity Attack

e ML10:2023 Model Poisoning

* https://owasp.org/www-project-machine-learning-security-top-10/



« MLO01:2023 Input Manipulation Attack
* An attacker deliberately alters input data to mislead the model
* This attack is also called evasion

« Example: a model is trained to tell cat images from dog images.
An attacker modifies a cat image so it is misclassified as a dog.

« ML02:2023 Data Poisoning Attack

* An attacker manipulates the training data to cause the model to
behave in an undesirable way

« MLO03:2023 Model Inversion Attack

* An attacker reverse-engineers the model to extract information
from it

« Example: a model is trained to recognize faces. An attacker
iInputs images of individuals into the model and and recovers
the personal information of the individuals from the model's
predictions, such as their name, address, or social security
number.



« ML04:2023 Membership Inference Attack

* An attacker manipulates the model’s training data in order to
cause it to behave in a way that exposes sensitive information

 Example: A malicious attacker trains a machine learning model
on a dataset of financial records and uses it to query whether
or not a particular individual’s record was included in the
training data.

 ML05:2023 Model Theft
* An attacker gains access to the model’s parameters
 Example: Stealing a machine learning model from a competitor
« ML06:2023 Al Supply Chain Attacks

* An attacker modifies or replaces a machine learning library or
model that is used by a system



« ML07:2023 Transfer Learning Attack

e An attacker trains a model on one task and then fine-tunes it
on another task to cause it to behave in an undesirable way

 Example: An attacker trains a machine learning model on a
malicious dataset that contains manipulated images of faces.
The attacker then transfers the model’s knowledge to a target
face recognition system. As a result, the face recognition
system starts making incorrect predictions, allowing the

attacker to bypass the security and gain access to sensitive
information.

* ML08:2023 Model Skewing

* An attacker manipulates the distribution of the training data to
cause the model to behave in an undesirable way.

« Example: The attacker provides fake feedback data to a loan-
approving machine learning system. As a result, the model’s
predictions are skewed, and the attacker’s chances of getting
a loan approved are significantly increased.



 ML09:2023 Output Integrity Attack

* An attacker aims to modify or manipulate the output of a
machine learning model in order to change its behavior or
cause harm to the system it is used in.

 Example: An attacker has gained access to the output of a
machine learning model that is being used to diagnose
diseases in a hospital. The attacker modifies the output of the
model, making it provide incorrect diagnoses for patients.

« ML10:2023 Neural Net Reprogramming

* An attacker manipulates the model's parameters to cause it to
behave in an undesirable way.

« Example: A bank is using a machine learning model to identify
handwritten characters on cheques. An attacker manipulates
the parameters of the model by altering the images in the
training dataset or directly modifying the parameters in the
model. This can result in the model misidentifying characters,
leading to incorrect amounts being processed.



OWASP Top 10 for
LLM Applications

VERSION 1.1

Published: October 16, 2023

https://owasp.org/www-project-top-10-for-large-language-model-applications/



LLMO1: Prompt Injection

This manipulates a large language model (LLM) through
crafty inputs, causing unintended actions by the LLM.
Direct injections overwrite system prompts, while indirect
ones manipulate inputs from external sources.

LLMO2: Insecure Output Handling

This vulnerability occurs when an LLM output is accepted
without scrutiny, exposing backend systems. Misuse may
lead to severe consequences like XSS, CSRF, SSRF,
privilege escalation, or remote code execution.



LLMO3: Training Data Poisoning

This occurs when LLM training data is tampered,
introducing vulnerabilities or biases that compromise
security, effectiveness, or ethical behavior. Sources
include Common Crawl, WebText, OpenWebText, & books.

LLMO4: Model Denial of Service

Attackers cause resource-heavy operations on LLMs,
leading to service degradation or high costs. The
vulnerability is magnified due to the resource-intensive
nature of LLMs and unpredictability of user inputs.



LLMOS: Supply Chain Vulnerabilities

LLM application lifecycle can be compromised by
vulnerable components or services, leading to security
attacks. Using third-party datasets, pre- trained models,
and plugins can add vulnerabilities.

LLMOG6: Sensitive Information Disclosure

LLMs may inadvertently reveal confidential data in their
responses, leading to unauthorized data access, privacy
violations, and security breaches. It's crucial to implement
data sanitization and strict user policies to mitigate this.



LLMO7: Insecure Plugin Design

LLM plugins can have insecure inputs and insufficient
access control. This lack of application control makes
them easier to exploit and can result in consequences like
remote code execution.

LLMO8: Excessive Agency

LLM-based systems may undertake actions leading to
unintended consequences. The issue arises from
excessive functionality, permissions, or autonomy granted
to the LLM-based systems.



LLMO9: Overreliance

Systems or people overly depending on LLMs without
oversight may face misinformation, miscommunication,
legal issues, and security vulnerabilities due to incorrect or
iInappropriate content generated by LLMs.

LLM10: Model Theft

This involves unauthorized access, copying, or exfiltration
of proprietary LLM models. The impact includes
economic losses, compromised competitive advantage,
and potential access to sensitive information.



Copilot Security: Ensuring a Secure Microsoft
Copilot Rollout

This article describes how Microsoft 365 Copilot's security model works and

the risks that must be mitigated to ensure a safe rollout.

@ Rob Sobers | 5 minread | Last updated April 11, 2024

N\ VARONIS




Microsoft 365 Copilot Use Cases

Copilot can join your Teams meetings and summarize in real time what's being discussed,

capture action items, and tell you which questions were unresolved in the meeting.

Copilot in Outlook can help you triage your inbox, prioritize emails, summarize threads,

and generate replies for you.

Copilot in Excel can analyze raw data and give you insights, trends, and suggestions.

* Writes documents for you

 Based on data found in your Email, documents, spreadsheets,
and other files you have access to

* |n the Microsoft365 cloud

 Based on your Microsoft365 permissions



Microsoft 365 Apps

Microsoft 365 Copilot
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@ Copilot accesses Graph and Semantic Index for pre-processing

@ Copilot sends modified prompt to Large Language Model

@ Copilot receives LLM response

@ Copilot accesses Graph and Semantic Index for post-processing

@ Copilot sends the response, and app command back to Microsoft 365 Apps



What Microsoft Handles for You

Tenant isolation. Copilot only uses data from the current user's M365 tenant. The Al tool
will not surface data from other tenants that the user may be a guest, in nor any tenants

that might be set up with cross-tenant sync.

Training boundaries. Copilot does not use any of your business data to train the

foundational LLMs that Copilot uses for all tenants. You shouldn't have to worry about

your proprietary data showing up in responses to other users in other tenants.




What You Need to Manage

Permissions. Copilot surfaces all organizational data to which individual users have at

least view permissions.

Labels. Copilot-generated content will not inherit the MPIP labels of the files Copilot

sourced its response from.

Humans. Copilot's responses aren't guaranteed to be 100% factual or safe; humans must

take responsibility for reviewing Al-generated content.




Multicloud environments Workload identities accessing
are complex cloud environments are

increasing, now outnumbering
human identities

10:1
®
After analyzing over ®

40,000+ 500

permissions to manage assessments,

we found that most identities are
greatly over-permissioned, putting

o organizations’ critical environments
> 5 0 /o at risk for accidental or malicious

permission misuse

are high-risk

o Microsoft Security
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The Average M365 Tenant has

40+ million unique permissions

113K+ sensitive records shared publicly

27K+ sharing links




Why Does This Happen?

Direct user permissions

Microsoft 365 group permissions

SharePoint local permissions (with custom levels)
Guest access

External access

Public access

Link access (anyone, org-wide, direct, guest)




Microsoft Purview data security and
compliance protections for Microsoft

Copilot

Article » 03/26/2024 + 3 contributors 5 Feedback

* But you must enable sensitivity labels
* For SharePoint and OneDrive
 If humans fail to apply and update labels, the system fails



How to Weaponize Microsoft Copilot
for Cyberattackers

At Black Hat USA, security researcher Michael Bargury released a
"LOLCopilot" ethical hacking module to demonstrate how attackers can
exploit Microsoft Copilot — and offered advice for defensive tooling.

Jeffrey Schwartz, Contributing Writer
A August 8, 2024

Using the tool, Bargury can add a direct prompt injection to a copilot,
jailbreaking it and modifying a parameter or instruction within the model.
For instance, he could embed an HTML tag into an email to replace a
correct bank account number with that of the attacker, without changing
any of the reference information or altering the model with, say, white text
or a very small font.




Meta's Al safety system defeated by the
space bar

'Ilgnore previous instructions' thwarts Prompt-Guard model
If you just add some good ol' ASCII code 32

A Thomas Claburn Mon 29 Jul 2024 21:01 UTC




Home Users are Safe. Right?

=" Microsoft

Retrace your steps with Recall

Search across time to find the content you need. Then, re-engage with it. With Recall, you have an
explorable timeline of your PC's past. Just describe how you remember it and Recall will retrieve the
moment you saw it. Any photo, link, or message can be a fresh point to continue from. As you use your
PC, Recall takes snapshots of your screen. Snapshots are taken every five seconds while content on the
screen is different from the previous snapshot. Your snapshots are then locally stored and locally
analyzed on your PC. Recall’s analysis allows you to search for content, including both images and text,
using natural language. Trying to remember the name of the Korean restaurant your friend Alice
mentioned? Just ask Recall and it retrieves both text and visual matches for your search, automatically
sorted by how closely the results match your search. Recall can even take you back to the exact
location of the item you saw.
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Whole College Course

* https://samsclass.info/ML/ML_F23.shtml
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A Programmer’s Guide to Artificial inteligence

Sat 11:00 am - 2:00 pm Online
only
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Laurence Moroney

Forewced by Ancrow Ng For interactive help, connect to:
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Feoes Optional Password: student1 No official college credit

Schedule - Lecture Notes - Projects

Class Description

Every technical product is now incorporating machine learning at an explosive rate. But most people, even those with strong
technical skills, don't understand how it works, what its capabilities are, and what security risks come with it. In this
workshop, we'll make machine learning models using simple Python scripts, train them, and evaluate their value. Projects
include computer vision, breaking a CAPTCHA, deblurring images, regression, and classification tasks. We will perform
poisoning and evasion attacks on machine learning systems, and implement deep neural rejection to block such attacks.

No experience with programming or machine learning is required, and the only software required is a Web browser. We will
use TensorFlow on free Google Colab cloud systems.




