Securing Critical Infrastructure

Sam Bowne April 28, 2025

History of Critical Infrastructure Security

 From https://www.forescout.com/blog/since-stuxnet-a-briefhistory-of-critical-infrastructure-attacks/

1 Understanding Operational Technology

Operational Technology (OT)

- Technology that interacts with the physical world
- Hardware, software, and systems
 - That monitor, control, and optimize real-world processes
 - In industries including
 - Manufacturing
 - Transportation
 - Energy
 - Healthcare
 - And more

Topics

- Differentiating OT from IT
- Network Infrastructure for OT systems
- Protocols: The Traffic Rules of OT Communication
- Hierarchical Network Architecture: Organizing Chaos
- Network Performance The Need for Speed and Precision
- Robustness and Reliability: Weathering the Storm
- Applications of OT in Industries

Differentiating OT from IT

OT v. IT

- OT
 - Concerned with the operation of physical processes
 - Like manufacturing, power generation, etc.
 - Drives machinery, controlling pressure, temperature, etc.
- IT
 - Computers, software, networks and systems
 - For processing and distributing data
 - Supports data analysis, decision making, communication, etc.

OT v. IT

- OT
 - Located on the plant floor
 - Direct control and management of industrial operations
- IT
 - Office-based
 - Computing and communication technologies, such as
 - Databases, email, enterprise resource planning systems

IT/OT Convergence

- Integrating the two domains can lead to
 - Improved efficiency, productivity, and decision-making
- IT Priorities
 - Confidentiality, Integrity, Availability
- OT Priorities
 - Safety, Reliability, Productivity

Infrastructure

- Hardware and software
- That facilitates communication between OT components
 - Sensors, actuators, control systems, etc.
- Networks may be small and localized
 - Or multi-site networks spanning entire facilities
 - Or even geographical regions

Protocols

- Rules that define how data is sent over the network
- Traditional OT Protocols
 - Modbus
 - Profibus
 - DNP3
- Designed for reliability and real-time communication
- Prioritizing operational continuity over data security

Convergence

- TCP/IP is becoming prevalent in OT systems
- Benefits
 - Interoperability
 - Advanced data management capabilities
- Risks
 - Exposes OT systems to cyber-attacks

OT Network Architecture

- Hierarchical, with layers for:
 - Enterprise systems
 - Control systems
 - Field devices
- Factors to consider:
 - Determinism (actions occur at set, predictable times)
 - Latency (time between an instruction and data transfer)
 - Jitter (variation in latency)

Purdue Enterprise Reference Architecture (PERA)

From Wikipedia

Protocols: The Traffic Rules of OT Communication

Protocols

- Modbus, Profibus, and DNP3
 - Provide real-time, reliable communications
 - Lightweight and simplistic
 - Require little computational power
 - Suited for resource-limited industrial settings

Comparing Protocols

Modbus

- Old and simple, from 1979
- Easy deployment, rapid communication

Profibus

- A bit more complex
- Greater data capacity
- Can network an extensive range of automation devices

DNP3

- Most robust
- Common in utilities, where telemetry data and control commands need to be reliably handled

Hierarchical Network Architecture: Organizing Chaos

Purdue Enterprise Reference Architecture (PERA)

- Top level
 - Enterprise systems
 - Data servers and managerial workstations
 - Data analysis, process optimization, and oversight of the entire operation
- Middle level
 - Control systems
- Lower levels
 - Sensors and actuators
 - Interact directly with physical processes

Network Performance - The Need for Speed and Precision

OT Network Requirements

- Real-time control (determinism)
- Latency
 - Lower latency means faster data transfer
- Jitter
 - Variation in latency
 - Must be minimized

Robustness and Reliability: Weathering the Storm

Planning for Contingencies

- OT systems operate in harsh environments
 - Power plant, oil rig, factory floor
- Plan for contingencies, such as
 - Equipment failure
 - Electromagnetic interference
 - Extreme environmental conditions
 - Physical tampering

Redundancy and Diversity

- Redundancy
 - Backup systems take over in case of failure
- Diversity
 - In components and technologies
 - Reduce common points of failure

Applications of OT in Industries

OT in Manufacturing

- Automates production processes
- Improves quality control
- Facilitates predictive maintenance
 - With Artificial Intelligence (AI) and Machine Learning (M L)
- Fully automated production line

Image from https://www.cnbc.com/2023/07/24/tesla-to-discuss-factory-plan-for-new-24000-car-with-india-commerce-minister-says-report.html

Energy and Transportation

- Energy and Utilities
 - OT helps manage the generation and distribution of electricity
 - In a nuclear power plant, OT monitors and controls temperature and pressure
 - Adjusts the angle of turbine blades in a wind farm
- Transportation
 - Traffic management systems
 - Sensors monitor traffic flow and adjust signal timing
 - Control systems in railways and airports

Oil and Healthcare

- Oil and Gas
 - OT monitors and controls drilling operations
 - Manages pipeline flows
 - Detects leaks
 - Reduces the need for humans in harsh environments
- Healthcare
 - Manages HVAC in hospitals
 - Automated devices for patient care
 - Like infusion pumps that deliver doses of medicine at predetermined intervals

2 Fundamentals of OT Systems Introduction

Topics

- Key Components of OT Systems
- Architecture and Design Principles of OT Networks and Systems
 - Hierarchy
 - Modularity
 - Determinism
 - Resiliency
 - Security
- Key OT Protocols

Key Components of OT Systems

Hardware

Sensors

Monitor physical properties like temperature or pressure

Actuators

- Take instructions, usually from a PLC
- Carry out physical actions like opening a valve or starting a motor

Programmable Logic Controllers (PLCs)

- The brains of the OT system
- Process data from sensors and send commands to actuators

Networking Equipment

• Routers, switches, cables, etc.

Software

Operating Systems

- Manage the hardware resources of a device
- Provide services for software applications

Applications

Programs that carry out specific tasks

Firmware

Low-level software that controls a device's hardware

Control Systems

- Supervisory Control and Data Acquisition (SCADA) Systems
 - High-level control system
 - Allows operators to monitor and control industrial processes remotely
- Distributed Control Systems (DCS)
 - Autonomously manages complex processes across a large facility
 - Distributes control functions across various subsystems
 - For greater efficiency and reliability

Architecture and Design Principles of OT Networks and Systems

Hierarchy

- At the top are enterprise-level systems, such as
 - Enterprise Resource Planning (ERP) systems
 - Link the operations on the factory flood with broader business goals
- Beneath that tier are SCADA systems
 - Managing industrial processes
- Middle layers contain control systems
 - PLCs (Programmable Logic Controllers) or
 - DCS (Distributed Control Systems)
- At the lowest level are field devices
 - Sensors and actuators

Purdue Model

- Level 6: The Security Management Layer
 - Implement security policies
 - Risk management
 - Incident response
 - Compliance
- Level 4/5: The Enterprise Business Systems Layer
 - ERP systems
- Level 3.5: The Demilitarized Zone (DMZ)
 - A buffer between internal and external networks, for security

Purdue Model

- Level 3: The Site Manufacturing Operations Layer
 - Work orders, schedules, etc.
- Level 2: The Area Supervisory Layer
 - SCADA
- Level 1: The Controller Layer
 - PLCs
- Level 0: The Physical Layer
 - Sensors and actuators that drive production systems

Modularity

- System uses distinct, independent modules
- Provides flexibility, scalability, and efficiency
- Advantage
 - Cost-effective: can upgrade or replace individual modules
- Disadvantage
 - Security: more modules increases attack surface

Determinism

- If a condition repeats, the same action will result
- Provides improved coordination, predictability, and performance
- Advantages
 - Performance and Reliability
- Disadvantage
 - Flexibility Trade-off
 - A highly deterministic system can be less flexible
 - Cannot adapt to changes or unexpected events

Resiliency

- The OT system's ability to maintain operations and quickly recover from adverse conditions or disruptions
 - Hardware failures, power outages, cyberattacks, etc.
- Resilience strategies
 - Processes to identify and isolate issues, implement fixes or workarounds, and validate that the system is functioning correctly
- Disadvantage
 - Increased costs, for
 - Redundant hardware
 - Managing and maintaining a more complex system
 - Disaster recovery planning

Security

- Protecting Confidentiality, Integrity, and Availability
- Prevent unauthorized access
- Risk management, monitoring, updates
- Key element
 - Incident Response Planning
- Challenge
 - Complexity

Key OT Protocols

Modbus, OPC, and DNP3

Modbus

- Old and simple, easy to implement
- OPC (OLE for Process Control)
 - Standard for data exchange in the OT world
 - Allows different hardware and software to communicate effectively
 - OPC UA (Unified Architecture)
 - Is popular, with platform independence and robust security features
- DNP3 (Distributed Network Protocol)
 - Robust and flexible
 - Popular in utilities sector

Ethernet/IP and PROFINET

Ethernet/IP

- A member of the DeviceNet family
- Uses Ethernet infrastructure

PROFINET

- An extension of the popular PROFIBUS fieldbus system
- High-speed and flexible architecture for industrial Ethernet

3 Integration of IT and OT Introduction

Topics

- Benefits of IT-OT Convergence
- Challenges and Considerations

Benefits of IT-OT Convergence

Enhanced Visibility and Decision-Making

- Data from sensors can be displayed on user-friendly dashboards
- Alerts can be sent for dangerous situations

 Image from https:// periclesgroup.substack.com/p/howhomer-simpson-and-hippies-have

Benefits of Convergence

- Increased Efficiency and Productivity
 - Monitoring vehicles with GPS can improve fuel efficiency
- Improved Agility and Innovation
 - If the price of a mineral drops, production of it could be decreased
- Better Risk Management and Cybersecurity
 - Data from many sensors could detect unusual activity
 - Such as a cyberattack or malfunction

Cultural Differences

- OT team wants to maintain operation and reach production targets
- IT team might prioritize protecting data integrity and IT security protocols
- Training should help harmonize the teams

Technological Compatibility

- OT systems often use old technology, which is incompatible with modern IT gear
- Upgrading OT devices may be difficult or costly
- Middleware is a common solution

Security Concerns

- IT threats like malware may impact OT on a converged network
- Defenses like firewalls, IDS, and access control can help
- Awareness training and incident response plans are also needed

Data Overload

- OT devices may produce a lot of data, overwhelming IT log analysis systems
- Data analytics and machine learning can help
- This data may raise security and privacy concerns

Regulatory Compliance

- Local, regional, and international regulations about
- Occupational safety, environmental sustainability, data privacy, and more