
Theories on Persistence
Neel Mehta

The plan (aka an outline)

● Some basics (a framework to think about
persistence)

● Persistence mechanisms for Windows
○ Commonplace persistence (why I hate malware)
○ Building on variations, introducing OS

idiosynchracies and layers of the OS and hardware,
going deeper.

○ Persistence possibilities off the CPU (AMT)
● Wrap up and deep thoughts.

Some Basics

Persistence in the malware sense is:

Bootstrapping future access to an already
compromised system.

Can be broken down into:
● A persistence mechanism (restarts malware

on reboot).
● A way to re-establish a useful presence on

the system (initialization).

Persistence Mechanism

Think Windows 'Run' keys, Linux init scripts, .
plist files for OS X, etc...

Often, but not necessarily, tied to the OS boot
process.

Re-establish a useful presence

It might seem obvious, but...

The persistence mechanism should typically
suit the initialization needs of an implant.

A persistence mechanism that lands you in a
chroot jail as 'nobody' doesn't suit initialization
well.

Ever wonder why?

...

Downsides of persistence

Leaves a semi-permanent, and often
detectable/predictable footprint.

Most malware authors do not balance the
benefits of persistence over time with the
increased chances of detection.

Forensic analysis often focuses on persistence
to find implants.

Inevitable disappointment

Creative persistence is far from the norm, and
most malware fall far short.

The most disappointing samples are dropped
by great exploits, use stealthy comms, but drop
to disk in clear and write by a Run key.

'Internet Hacking' is hard (really)

In its most effective forms, offense is far from a
single discipline.

Can you:

Find 0day, design/develop/maintain/QA exploits and
implants, run infrastructure, ops, maintain perspective
and oversight, and still find time for holiday shopping?

CNE programs beat the Lone Wolf, and the
Lone Wolf beats...

Flavors and Degrees of Persistence

Are you trying to persist through:
-context switches, application crashes,
cold/warm boots, AV sig updates, OS reinstall
or upgrade, hardware replacement, password
resets, authorization revocation, network
lockdown, full infrastructure
rebuild/replacement?

Configuration and code are hard to bundle and
update, how do you persist with both?

Somehow, you found THE attacker!

Can you rewind to a clean state?

Finding unanticipated persistence must be
balanced with the practical and paranoid.

Did the attacker even need to
persist?

How often is the target system rebooted?

How heavily monitored, and how homogenous
an environment is it?

How valuable is access over multiple reboots,
vs. initial access?

Is breaking in again even that hard for the
attacker?

Persistence Mechanisms
on Windows

Windows Persistence Basics

Create a new:

● Run registry key.
● Service.
● Item in a startup folder.
● INI file entry.
● Winlogon extension.
● COM control variant (shell extension, WMI provider,

BHO, etc...)

Assumption: No one notices new software.

File Replacement

For example:
● Replace an auto-started service dll in registry, then on

startup actively proxy invocations of DllMain() and
ServiceMain()

Or:
● Replace an existing COM control in HKCR\CLSID\

{GUID}\InprocServer32, subclass the control's methods,
and proxy.

Assumption: Replacing is less noticeable than
adding.

Displace instead of replace

Rather than replace, a file on disk, modify a
registry key (ServiceDll, InprocServer32 default
value, or equivalent), then proxy instantiation.

Assumes:
Modifying an existing reg key, and adding a
new file, is less noticeable than replacing a
system file (or simply adding new software).

Displace via loader preference

Seen on Windows via DLL search order, Linux
via LD_PRELOAD, and in any sufficiently
complex loader.

DLL search order almost always favors the
local directory over system32\. The shell
(explorer.exe) is in C:\Windows, not system32.

Assumes: comctl32.dll in an odd path is less
noticeable than an innocuous name and reg
key.

Other subystems

Print spooler drivers (popular)
Winlogon, LSA, Crypto providers, auth
providers
.NET assemblies
Input method editors (IME's)
Sidebar gadgets
MIME types, protocol handlers
The catch all: various plugins!

Subsystems with their own stack

Window messages
Image codecs
Directshow filters
WFP drivers
Filesystem filters
Any driver with IRP_MJ handlers

Complicated loaders complicate *

WinSxS and PE manifests.

DLL redirection
● To what DLL does "api-ms-win-core-libraryloader-l1-1-0.

SetDefaultDllDirectories" specifically refer to?

Lazy loading / symbol resolution
● Might used to selectively split dependencies

between modules, or displace dependencies

Compatility on x64

--WoW
● (take that everyone who sat on NTVDM 0day)

++WoW64
● Add address-space complexity in user-mode.
● 32 and 64-bit code segments co-exist in the same

process at ring 3 - far JMP / CALL to swap segment
(and default argument size)

● Loader implications for persistence ?
Also complicating loader behaviour:

● Internationalization / MUI (can be enabled
on XP, but Vista+ by default)

Persisting via loader intricacies
The basics don't change - you'll have to or
introduce an anchor point, most likely a file on
disk.

If you assume your loader will be found via
persistence, you can obscure or delay
detection of stage 2.

INI File Redirection

You can redirect INI file settings, on a per-user
basis, via a registry key (internals handled by
CSRSS at runtime).

No need to modify the original INI, just the
registry.

Some INI files deprecated in x64 (system.ini
because WoW is gone), but there are others.

Folder redirection

Introduced during the Vista / UAC transition.

Entire folders can be redirected wholesale,
without modifying the originals, via registry keys
(not visible at a FS level like NTFS junction
points).

Do forensic tools account for this?

Slide intentionally not mentioning
ADS

Use hardcoded paths for event-
driven OS callbacks

Especially those absent by default:

Fxsst.dll is popular.

CPL files in system32 (post-Stuxnet).

Startup folders.

Autorun.inf / desktop.ini on fixed drives.

Task scheduling

Scheduler / atsvc - pick a future time to run

Persistence on boot / shutdown

When started, delete persistence and register a
power event handler to catch shutdown.

On shutdown event, re-register persistence.

Works best for drivers, but far from perfect
● Reliable enough?
● No shield from inert forensics (unless you

can detect that last shutdown).

Moving Beyond the Really
Boring

Lower layers of persistence

Modify NTOSKRNL or its dependencies (like
HAL), and cloak signs of this before the OS
starts.

Use hibernation to persist

Hiberfil.sys stores all physical memory on
hibernation. Space is pre-allocated in
perpetuity.

When to resume then?

Magic bytes (hibr) indicate the OS should
awake from hibernation, not just boot (see
Ruff/Suiche analysis).

Peter Kleissner suggested modifying the MBR
to tweak hiberfil.sys on boot.

Use hibernation to persist

Modifying the MBR is overly noisy.

Instead, hook the OS after it marks 'wake' in
hiberfil.sys, and re-mark it 'hibr', and add
persistence to hiberfil.sys (see Ruff / Suiche
analysis).

Not ideal (why does my system always resume
from hibernation???).

Go lower maybe?

NTLDR, ntdetect.com, MBR.

All are relatively noisy, but low enough to avoid
most active detection. Payload must be small,
the dropper must be file-system aware.

Overly used in recent years to bypass code-
signing requirements for drivers on Win x64
(TDL4 for example).

Even lower
Partition table or GPT - boot another OS, start
a hypervisor/VMM (insert random Matrix
reference).

Still obvious from a forensics perspective.

Even lower

BIOS, option and extension ROM's for
peripherals.

Almost always signed, but implementations are
flawed - Ryan Smith's (Hustle Labs) work
bypassing RSA signatures on Lenovo BIOS
updates - Baythreat 2010.

Beyond Main Memory

Other peripherals

Many are flashable, like keyboards. Some are
even permanently attached!

A trend toward IO virtualization will devalue this
over time.

Most peripherals use a structured protocol
like USB.
IOMMU's or VTd should be ubiquitious for
peripherals that do DMA, but we're not there
yet.

Even lower?

Microcode - generally not feasible.

Intel microcode format is a black box (to me
and my search engine anyways).

Some public work on AMD microcode:
● Uncovered hardware debugging features
● Identified and modifed instruction encoding maps.

Still tricky, + microcode won't survive cold
boots.

AMT

If not lower, then laterally?

Intel AMT (part of vPro) - an enterprise
management feature off on most consumer
rdevices.

Runs off the main CPU, on the North Bridge,
and is treated as ring -1 (more trusted).

Often bundled with other features of vPro that
enterprises really need (VTx, TXT).

AMT - terrifying or not?

OEM's turn it off on most consumer hardware,
but when on:
● Loads before the OS, runs off CPU, and is

flashable.
● Has its own dedicated persistent storage off

disk.
● Remotely provisionable, even from factory

settings, or via light touch (USB)

AMT - terrifying or not?

AMT survives some severe HW failures, like
the main disk dying (zombie-like).

Modern versions have no prescribed ON/OFF
switch, the intention being that someone at the
keyboard is unable to disable it (not in the BIOS
or MEBX settings).

The OS has no visibility.

AMT

● Provides:
○ Hardware KVM or VNC
○ Disk access
○ Network filtering / monitoring
○ Wake on Lan (even 802.11 I think).
○ Voice over WLaN.

● AMT is an embedded OS, including a full

TCP/IP stack, HTTP, SSL, and much more.

Zero-touch Configuration (ZTC)

Intel term for remote AMT provisioning; how are
authentication and authorization done?

Buy an SSL cert provisioned for AMT/vPro from
a CA in their root of trust to authenticate
yourself.

Using this cert, you connect over a couple
hardcoded ports (16992/3) to authenticate.

ZTC Authn / Authz

For a feature this risky, the choice for authn
sounds reasonable (to me).

Authorization is done through two checks:
1. Match the CN from the provided cert to the machine
2. Check a CNAME for the cert domain, and match it to

the IP of the provisioning machine.
But, how does AMT match a machine to a
domain?

The catch...

A machine is matched to a domain name via
DHCP option 15 (domain name). This must
match the CN (domain) from the cert.

Also, a CNAME must be set up for the
provisioning server, matching the cert as well.

Hrm.

Rogue DHCP Servers

Typically a nuisance (when not exploiting
DHCP clients).

However, some router vendors have features to
block rogue DHCP by port.
● If you're willing to accept the added

config/maintainence complexity.

Vulns in AMT?

AMT firmware 3 years ago was ARC assembly
(I found one toolchain with objdump).

Today, it's ARM running Linux - accessible and
easyto decompose and reverse for anyone with
embedded systems experience (1 hour, a hex
editor, and IDA)

Deep Thoughts :)

Something to consider

Do your IR procedures have any chance of
catching sophisticed persistence mechanisms?

Is a re-image enough?

Final un(in)formed thoughts

Why is jailbreaking not only legal but good over
time?

Smartphones run at least 2 OS's, the phone OS
(Android, iOS, BBOS, Symbian) being the
subordinate.

Persistence can have nothing to do with the OS
or machine - like credentials, signing keys,
poisoned software or hardware.

Lastly

Are malware authors myopic or compulsive in
their need for persistence?

Is the need for persistence part of the human
condition? <-- deep

And a final plea: Please give us something
interesting to look at (and get caught :).
Thanks!

